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PREFACE 

 
It is a great pleasure to welcome all participants of the Second International Conference 

on Computational Methods for Thermal Problems (THERMACOMP2011) to Dalian. 
Computational and mathematical methods have had a profound impact on the 
understanding and advancement of engineering science and technology over the last few 
decades. The conference aims to convene a diverse scientific audience of 
mathematicians, physicists, engineers and computational scientists that have a 
communal interest in modelling thermal problems. It is encouraging to learn that this 
conference represents an interdisciplinary forum of scientists with expertise ranging 
from heat conduction, convection and radiation to CFD and thermo-mechanical 
coupling. We hope that the interaction between scientists during the conference leads to 
new topics of research and new collaborations.  
 
THERMACOMP2011 consists of four plenary lectures, six keynote lectures, four 
organized mini-symposia and four standard sessions. We are grateful to all invited 
speakers for accepting our invitation. 
 
We thank THERMACOMP2011 sponsors, supporters, mini-symposium organizers, 
executive, advisory and local committee members for their support. 
 
We would also like to thank all the reviewers that helped assuring the technical quality 
of this Conference. 
 
Xikui Li    Nicola Massarotti    Perumal Nithiarasu 
China    Italy     United Kingdom 
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ABSTRACT 

The numerical simulation of practical thermal processes is generally complicated because of 
multiple transport mechanisms and complex phenomena that commonly arise. In addition, the 
materials encountered are often not easily characterized and typically involve large property 
changes over the ranges of interest. The boundary conditions may not be properly defined and or 
may be unknown. The geometry and interactions between different components are also often quite 
complicated. However, it is important to obtain accurate and dependable numerical results from the 
simulation in order to study, design, and optimize most practical thermal processes of current and 
future interest. The models employed must be validated and the accuracy of the simulation results 
established if the simulation is to form the basis for improving existing systems and developing new 
ones in applications areas such as energy, manufacturing, environmental control, electronics cooling, 
and transportation. This paper focuses on the main challenges that are encountered in obtaining 
accurate numerical simulation results on practical thermal processes and systems. It considers a 
wide variety of systems, ranging from materials processing to energy and cooling. Of particular 
interest are concerns like verification and validation, imposition of appropriate boundary conditions, 
and modelling of complex, multimode transport phenomena in multiple scales. Additional effects 
such as viscous dissipation, surface tension, buoyancy and rarefaction that could arise and 
complicate the modelling are discussed. Uncertainties that arise in material properties and in 
boundary conditions are also important in design and optimization. Large variations in the geometry 
and coupled multiple regions are also discussed. The methods that may be used to meet these 
challenges are discussed, along with typical results for a range of important processes. Future needs 
in this interesting and challenging area are also outlined.                      

Key Words: Thermal processes, thermal systems, numerical simulation, accuracy, challenges  

1. INTRODUCTION 

Numerical modelling of thermal processes that are of interest in important applications such as 
those related to energy, manufacturing, transportation, aerospace, heating, cooling, and to the 
environment is critical to a detailed study of the resulting phenomena and to the design and 
optimization of the relevant systems. Most of these practical circumstances are much too 
complicated to be investigated by analytical methods. Also, relatively limited data are usually 
available from existing processes and from appropriate experimental studies, which are often 
expensive and time consuming. In most cases, mathematical models of the processes and systems 
are developed, followed by numerical modelling and simulation. The models are validated by 
means of available analytical and experimental results and the numerical simulation is then used to 
provide the extensive numerical data needed for characterizing the processes and for design, control 
and optimization [1-3]. 

Most practical thermal processes and systems involve complex, coupled, transport mechanisms and 
interacting subsystems that constitute the overall system. As a consequence, several challenges are 
commonly encountered in obtaining accurate results from the numerical simulation of these systems. 
Some of the most important challenges are material properties, accurate imposition of boundary 
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conditions, validation, combined mechanisms, complex phenomena, multiple scales, multi-
objective optimization, uncertainties and other additional effects and complexities. This paper 
considers some of these aspects, presents examples where these considerations are of particular 
importance and discusses possible approaches to meet these challenges. 

As examples of typical practical thermal systems, consider the systems shown in Fig. 1. This figure 
shows sketches of the fabrication process for a hollow optical fiber, an electronic system cooled by 
microchannel flow and two configurations of chemical vapour deposition (CVD) reactors for thin 
film fabrication. These systems involve many of the complexities mentioned above. For instance, 
material properties of glass in optical fiber drawing are strong functions of temperature, combined 
modes of radiation, conduction and convection operate at various stages in the process, non-  

(a)      (b)       

   

(c)                             (d)  

FIGURE 1. Common thermal processes and systems: (a) Hollow fiber drawing; (b) Microchannel 
flow for electronic cooling and (c) and (d) Chemical vapor deposition (CVD) systems for thin film 

fabrication. 

Newtonian fluids are generally used for the fiber coating process and large changes in glass 
diameter occur in the draw furnace [4]. Similarly, the microchannel flow in electronic cooling is 
coupled with the system simulation at a much larger length scale. CVD involves chemical kinetics, 
which vary strongly with temperature and concentration [5]. The boundary conditions are fairly 
complicated in all cases and combined transport mechanisms are of interest. Similar considerations 
arise in other practical processes, as outlined later in this extended abstract and in the presentation. 

Feed Mechanism 

Drawing Furnace 

Fiber Diameter Monitor 

Accelerated Cooling Section 

Coating Cup 

Coating Concentricity Monitor 

Curing Furnace 

Coating Diameter Monitor 
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Winding Drum 
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A brief discussion of the challenges posed by the complexities in practical systems is given in this 
paper, considering a few selected examples such as the ones shown in Fig. 1. 

2. NUMERICAL MODELING OF PRACTICAL PROCESSES 

Let us consider the basic characteristics of mathematical and numerical modelling of typical 
thermal processes and systems. Considering the optical fiber drawing process, the flow of the glass 
and of the aiding purge gas in a cylindrical furnace is assumed to be axisymmentric. The governing 
equations for the glass and the gas are then given as, 
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Where u, v are the velocity components in the axial and radial directions, z and, r, respectively, p is 
the local pressure, T the temperature, t the time, the kinematic viscosity, the density, K the 
thermal conductivity, Cp the specific heat at constant pressure,   is the viscous dissipation term 
and rS  is the radiation source term. For glass, the material properties are strong functions of the 
temperature T. They also vary with composition and changes in the microstructure, the main effect 
being on the radiation properties. The variation in the viscosity is the most critical one for the flow, 
since it varies quite dramatically with temperature. An equation based on the curve fit of available 
data for kinematic viscosity  is written for silica, in S.I. units, as 

  = 4545.45 exp [ 32 (
Tmelt

T     - 1) ] (5) 

indicating the strong, exponential, variation of with temperature. Here, Tmelt is the glass softening 
temperature, being around 1900 K for silica glass. The radiative source term Sr in Eq. (4) is non-zero for 
the glass preform/fiber because glass emits and absorbs energy. The variation of the absorption 
coefficient with wavelength  can often be approximated in terms of bands with constant absorption 
over each band. Because of the small fiber diameter, being around 125 m, there is a temptation to 
assume uniform temperature across the fiber. However, because of the high temperature dependence of 
the viscosity, this assumption does not yield accurate results and a large number of grid points, 
typically around 50, are needed across the fiber radius of around 62.5 m to capture changes in 
temperature and the consequent effects on properties, viscous dissipation, thermally induced defects, 
and dopant movement.  

Similarly, the fiber coating process may be modeled. Typical coating thicknesses are of the order of 40-
50 m and are applied to the uncoated fiber or as secondary coating to a coated fiber. The basic coating 
process involves drawing the fiber of diameter around 125 m through a reservoir of coating fluid, with 
inlet and outlet dies. This is immediately followed by a curing process of the polymer coating material 
around the fiber. A balance between surface tension, viscous, gravitational, and pressure forces results 
in an upstream meniscus at the cup entrance, as well as a downstream meniscus at the die exit. At high 
speeds, the upper meniscus breaks down and air is entrained into the coating. The use of high draw 
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rates requires consideration of alternate pressurized applicator designs, where pressure induced motion 
of the coating material is used to reduce the shear at the fiber surface and helps in the establishment of a 
stable free surface flow. The control of the coating characteristics is of major concern in industry. 
These considerations have become particularly important as the coating speeds have been increased to 
values beyond 20 m/s to enhance productivity and as the interest in specialty fibers and fibers of 
different materials, including polymer fibers, has grown. The physical properties of the polymer 
coating materials, particularly the viscosity, and their dependence on temperature are of primary 
importance in the coating process. Surface tension has a significant effect on the flow near the free 
surface, which represents the interface between a liquid and a gas in many cases, and on the shape, 
stability and other characteristics of the interface.  
Similarly, consider an electronic component cooled by the microchannel single-phase flow of a coolant, 
as shown in Fig. 1(b). Depending on the fluid, dimensions and operating conditions, the Knudsen 
number for the flow may be determined, leading to continuum flow, slip flow or molecular flow [6]. 
The overall system, on the other hand, is at engineering, or macro-scale, and can be modeled using 
the usual conservation equations. The typical equations are of the form: 
Mass:     

 ( ) 0V   (6) 

Momentum: 

 ( ) ( )V V p V       (7) 

Energy:  

 ( ) ( )pV C T k T    (8) 

where  is the dynamic viscosity, k is the fluid thermal conductivity and V~ is the velocity vector. 
For the solid region, the conduction equation is used, with thermal conductivity of the solid k, as 

 ( ) 0
i i

Tk
x x
 


 

 (9) 

For conjugate problem, the heat conduction in the solid region and the flow in the fluid region are 
solved separately and then coupled at the solid–fluid interface.  

The chemical kinetics plays a critical role in the deposition of material from the gas phase in 
chemical vapor deposition systems [5]. The concentrations of the chemical species in the reactor 
affect the chemical kinetics, which in turn affect the deposition. In many cases, the process is 
chemical kinetics limited, implying that the transport processes are quite vigorous and the 
deposition is restricted largely by the kinetics. The chemical kinetics for several materials is 
available in the literature. For instance, the chemical kinetics for the deposition of Silicon from 
Silane (SiH4) with Hydrogen as the carrier gas in a CVD reactor is given by the expression [7]  

 K̂  = 
4221

4

1 SiHH

SiHo

pKpK
pK


 (10) 

where the surface reaction rate K̂  is in mole of Si/m2s, Ko = A exp (-E/RT), E being the activation 
energy, and A, K1, and K2 are constants which are obtained experimentally. The p's are the partial 
pressures of the two species in the reactor. However, the chemical processes are typically much 
more complicated, with several intermediate reactions in the gaseous phase and several at the 
surface. This is particularly true for the deposition of SiC and GaN. 
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3. RESULTS AND DISCUSSIONS 

A few practical processes and systems have been mentioned in the preceding, along with some of 
the challenges faced in an accurate simulation. Several of these are considered in greater detail here, 
along with relevant examples. However, only a brief outline and a few selected examples are 
considered. Further details and examples will be given in the presentation.  

3.1. Material properties, variations and characteristics 

The accuracy of any numerical simulation is dependent on the material properties used. This is 
particularly critical in practical processes where the properties vary with the local conditions like 
temperature and pressure and where changes in the material during the process can affect the 
properties. However, property data are often not available to the needed accuracy and often at 
conditions that are different from those of the process. This is particularly problematic for the 
manufacture of optical fibers which strongly depends on the physical properties of silica glass and 
their variation with the temperature T. The exponential dependence of viscosity on temperature was 
given earlier. The radiation properties, such as the variation of the absorption coefficient with 
wavelength  have been measured for certain compositions and glasses. But these data are often 
available only at room temperature, whereas the process is at much higher temperatures. Also, data 
may not be available for the particular glass or composition that is being simulated.  

Dopants such as rare earth materials are often used to modify the transmission characteristics of 
optical fibers and for specialized applications. Even though accurate models may be developed for 
the process [8], the data on the effect of the dopants on radiation properties and on viscosity are 
very limited [9], as shown here. 
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FIGURE 2. Effect of various dopants on the refractive index and viscosity of silica glass in the 
optical fiber drawing process. 

Similarly, the coating process involves non-Newtonian materials and large material property 
changes. The fluid viscosity is often taken as 

  = o ( .    / .  o ) n - 1  exp ( b /T )  (11) 

where .
  is the total strain rate, b the temperature coefficient of viscosity, subscript o indicates 

reference conditions and n is the power-law index of the fluid. The jacketing material is thus treated 
as a Generalized Newtonian fluid [10]. Other rheological models may also be used, depending on 
the fluid. Similarly, chemical kinetics play a critical role in chemical vapor deposition. Simple 
equations like the given earlier for Silicon are generally not available or applicable for the wide 
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variety of materials of practical interest. A large number of chemical reactions have to be solved in 
most cases and, again, the results are strongly affected by the material property and chemical 
kinetics employed. Lack of accurate property data is clearly a major hurdle in obtaining accurate 
simulation results in this case.  

Besides temperature and concentration, the material properties are also often sensitive to the 
conditions under which the material is stored as well as the fabrication process, age and raw 
materials used. The properties may also change with time, resulting in different values for 
experiments done at different times. This is particularly of concern with biological materials, 
polymers and chemicals. It is therefore important to know what material and under what conditions 
it is being employed so that the appropriate properties can be used in simulation. Also, in some 
cases, properties may be measured for more accurate inputs. Interpolation may be used with 
available data to obtain the best estimate of the properties under the operating conditions.  

3.2. Verification and validation of the mathematical and numerical models 

Generally, simplifications and idealizations are employed in the modeling of practical thermal 
processes and systems because of the complexities that arise. Therefore, it is critical to verify and 
validate the mathematical and numerical models to ensure that the results obtained are applicable, 
realistic and accurate [11]. Unless the models are satisfactorily validated, the simulation results cannot 
be used as the basis for design and optimization. Among the approaches used are a consideration of the 
physical behavior of the results obtained, comparisons with available analytical and numerical results, 
particularly benchmark solutions, and comparisons with available experimental data. It is also 
important to ensure that the results are essentially independent of the grid and other arbitrarily chosen 
numerical parameters. 

Because of the critical importance of validation, extensive efforts have to be made to obtain 
experimental data, whenever possible, for comparison with numerical predictions. In several cases, a 
separate, well-designed, experimental set-up may need to be fabricated to achieve this. In the modeling 
and simulation of single and twin-screw polymer extruders, a specially designed cam-driven 
thermocouple system was employed to obtain the temperature profile in the rotating screw and two 
rotating cylinders were used to study the mixing phenomena and thus validate the model for twin-screw 
extrusion [12].  

In the manufacture of optical fibers, a polymer coating is applied, as shown in Fig. 1(a), for 
protection against abrasion and to increase strength. Typical coating thicknesses are of the order of 
40-50 m and are applied to the uncoated fiber or as secondary coating to a coated fiber. The basic 
coating process involves drawing the fiber of diameter around 125 m through a reservoir of 
coating fluid, with inlet and outlet dies. This is immediately followed by a curing process of the 
polymer coating material around the fiber. At the die exit, the coating material is drawn out with the 
fiber, forming a downstream meniscus, which influences the coating characteristics.  

Thus, an important consideration in the coating process is the exit meniscus, which represents the 
profile of the free surface as the fluid exits from the die due to the viscous drag from the moving 
wire or fiber. The governing equations are solved to obtain the temperature and flow distributions, 
from which the shear at the free surface is determined. The additional forces due to gravity, surface 
tension and external shear due to air are included to determine the overall force balance. The force 
imbalance is used to generate an iteration scheme, starting with a guessed profile, till the force 
balance is satisfied and a converged meniscus is obtained [13]. Figure 3 shows the numerical results 
and compares these with experimental data on the exit meniscus profile. A good agreement is 
observed, indicating the validity and accuracy of this approach. Overall, it is necessary to make all 
possible efforts to validate the mathematical/numerical models, even if it means spending 
considerable time and effort in developing an experimental arrangement to obtain the data needed 
for comparisons. 
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FIGURE 3. Calculated meniscus at the exit of the die in the coating process, along with experimental 

measurements of the profile, for glycerin at a fiber speed of (a) 20 m/min; (b) 75 m/min 

3. 3. Accurate imposition of appropriate boundary conditions 

The accuracy of any numerical simulation is strongly dependent on the modeling and accuracy of 
the imposed boundary conditions. Even though isothermal and uniform heat flux conditions are 
commonly used in fundamental studies, these conditions can seldom be used in practical 
circumstances. For example, in modeling the solidification process in an enclosed region, using the 
multiple-domain or the enthalpy-porosity model, the coupled conduction, or conjugate transport, in 
the walls of the mold is an important consideration. The effect of the imposed conditions in a 
practical circumstance at the outer surface of the mold on the solidification process can be obtained 
by solving this conjugate problem, which yields the temperature distribution in the mold as well as 
that in the solid and the liquid. Figure 4(a) shows the effect of conduction in the mold on the 
resulting temperature and velocity distributions, as well as on the solidification. For casting of 
metals, alloys, polymers and other materials, it has been shown in several studies that it is important 
to model the conjugate transport in the mold walls and in any insulation that may be used in order to 
obtain realistic and accurate simulation results. 

Similarly, in the cooling of electronic systems, the isolated heat sources that approximate the 
components like electronic chips and devices are located on substrates that are conducting. 
Imposing adiabatic conditions on these surfaces is thus not a valid representation of the practical 
situation. The conduction in the walls distributes the heat input over the surface, rather than a 
concentrated heat source, resulting in substantial effect on the flow and the heat transfer. Figure 4(b) 
shows the calculated thermal and flow fields in an enclosed region with multiple heat sources that 
approximate electronic devices. Clearly, the walls play a very significant role in the heat transfer 
process and make it necessary to use the appropriate conjugate conditions. 

Many such examples can be given where the appropriate imposition of boundary conditions is 
critical to an accurate numerical simulation of a practical thermal system. In some cases, the 
boundary conditions may not be accurately known and the solution of the entire system, with all its 
components, to obtain the relevant boundary condition may be prohibitive in terms of cost and 
effort. One such circumstance is the optical fiber drawing furnace, where the wall temperature 
distribution is a critical input to the process. But this distribution is not easily determined 
experimentally because of limited access to the furnace and modeling is complicated by the 
presence of many control and traverse subsystems in the draw furnace. An inverse calculation, 
using the limited temperature data obtained from a graphite rod immersed in the furnace, has been 
used by Issa et al. [14] to determine the wall temperature, which can then be used to accurately 
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simulate the draw process. For the simulations of flow in a room with an opening, the 
computational domain is generally extended and boundary conditions imposed far from the region 
of interest to ensure accurate simulation results. Other such approaches have been used in practical 
systems to obtain the relevant boundary conditions and thus accurately simulate the process. 

(a)              (b) 

FIGURE 4. Effect of conjugate boundary conditions on the flow and heat transfer in (a) solidification 
process in casting; and (b) cooling of electronic devices located in an enclosed region. 

3. 4. Combined mechanisms 

In most practical thermal processes and systems, several coupled transport mechanisms generally 
arise and complicate the modeling and simulation. We considered conjugate boundary conditions in 
the preceding section, where the effects of combined conduction and convection were discussed. 
Similarly, in the furnace for optical fiber drawing, thermal radiation and convection arise as coupled 
mechanisms, as shown in Fig. 5(a). Convection arises both in the inert gas environment and in the 
glass, which is a subcooled liquid. Beyond the softening point, Tmelt, the glass is treated as a highly 
viscous liquid, with viscosity obtained from an equation such as Eq. (5). Below the softening point, 
the viscosity is very high and the glass behaves almost like a solid. Radiation is the dominant mode 
of transport and the glass is largely heated up by radiation. Using radiation models such as the zonal 
method, the radiation transport in the glass as well as in the furnace is determined to obtain the 
energy absorbed. The temperature variation in the perform/fiber depends on the combined radiation 
and convection, including viscous dissipation in the glass. Similarly, forced and natural convection 
arise in the furnace drawing of hollow fibers, as shown in Fig. 5(b). Thus, the models must include 
the combined mechanisms to determine the resulting transport, temperature variation and the flow, 
as well as the free surface profile as the fiber is drawn from a cylindrical perform of several 
centimeters in diameter to the fiber diameter of 125 m [15].  
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(a)           (b) 

FIGURE 5. Transport mechanisms in an (a) Optical fiber drawing furnace and (b) Hollow fiber 
drawing process. 

Another practical system that may be mentioned is that of the screw extrusion of reactive polymers 
like food materials. Figure 6 shows a sketch of the extruder, a simple mathematical model to obtain 
the domain as a channel and the boundary conditions for channel flow. The process involves 
convective combined heat and mass transfer and the resulting product depends on the inlet and 
imposed concentration C as well as the temperature T. The governing equations thus involve the 
flow equations along with the energy and mass transfer equations. Chemical reactions occur and 
give rise to source terms in the energy and mass conservation equations. The properties also vary 
with concentration, besides the temperature and the shear for non-Newtonian materials. 

  
FIGURE 6. A single-screw extrusion system for reactive polymers and other chemically reactive 

materials such as food. 
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In such combined transport mechanisms, it is necessary to model the different mechanisms 
accurately and to ensure that the coupling effects are not neglected. For instance, in combined heat 
and mass transfer, the Soret and Dufour effects may not be negligible and may need to be included.  

3.5. Complex transport phenomena 

In most practical thermal processes, we encounter significant additional effects, such as buoyancy, 
complex geometry, surface tension, viscous dissipation, and free surfaces, that considerably 
complicate the transport phenomena being modelled. We have already considered the free surfaces 
that arise during fiber drawing and the menisci obtained in the coating process. As discussed earlier, 
the resulting shape of these free surfaces is governed by a balance of the forces due to shear, tension, 
gravity, and surface tension. Similarly, a force balance is used at interfaces in multi-layered fibers, 
along with the conservation principles, to determine the resulting profiles. 

In hollow optical fiber drawing, a major concern is the collapse of the central core, which is needed 
for applications such as power delivery, sensors and infra-red radiation transmission. A collapse 
ratio C is defined to describe the collapse process of the central core as: 

 1 2 10 20( ) 1 ( ( ) / ( )) /( / )C z R z R z R R   (12) 

Thus, C = 0 when the radius ratio of the final fiber equals the initial radius ratio, and C = 1 when the 
central cavity is closed. The effects of the perform feeding and fiber drawing speeds and of the 
furnace temperature on collapse ratio have been studied in detail [15, 16]. Because of the size of the 
core, surface tension is an important parameter and plays a very significant role in the collapse. 
Pressurizing the inner core can also be used to affect the collapse. Figure 7 shows the variation of 
the collapse ration with pressure in the core and with the furnace temperature.  In order to avoid the 
collapse of the central cavity, we can increase the drawing and feeding speeds, decrease the furnace 
temperature, or increase the preform radius ratio. It is seen that the collapse ratio decreases with a 
decrease in the pressure difference. This is because higher pressure in the central cavity tends to 
prevent collapse of the central cavity.  
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FIGURE 7. Variation of the collapse ratio in hollow optical fiber drawing with pressure in the inner 
core and with furnace temperature. 

Thus, a wide variety of additional effects can arise in practical processes and thus complicate the 
transport phenomena being modeled. It is generally best to consider all the additional effects that 
may arise and to carry out a detailed scale analysis to determine which ones need to be retained. 
Then the complex process, with the important additional effects, can be modelled. 

3.6. Multiple scales  



 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 

A common challenge faced in the modeling of practical systems is the presence of transport 
processes and subsystems at different length or time scales. The governing equations for different 
scales in the problem may be different and thus the numerical approaches used in different regions 
may be quite different. As an example, consider the numerical simulation of pressure-driven 
nitrogen slip flow in long microchannels, with conjugate heat transfer in the walls under a uniform 
heat flux wall boundary condition. Figure 8(a) shows a sketch of this problem, which has not 
received the needed detailed investigation, despite its importance in many practical circumstances 
such as those related to the cooling of electronic devices and localized heat input in materials 
processing systems. For the gas phase, the two-dimensional momentum and energy equations are 
solved, considering variable properties, rarefaction, which involves velocity slip, thermal creep and 
temperature jump, compressibility, and viscous dissipation. For conduction in the solid region, on 
the other hand, the energy equation is solved with variable properties. Thus, the two regions are 
treated with different approaches. Figure 8(b) and (c) show the results for different substrate 
materials, including commercial bronze, silicon nitride, pyroceram and fused silica. The effects of 
substrate axial conduction, material thermal conductivity and substrate thickness are clearly seen. It 
is found that substrate axial conduction leads to a flatter bulk temperature profile along the channel, 
lower maximum temperature, and lower Nusselt number. The effect of substrate thickness on the 
conjugate heat transfer is very similar to that of the substrate thermal conductivity. That is, in terms 
of axial thermal resistance, the increase in substrate thickness has the same impact as that caused by 
an increase in its thermal conductivity.  
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FIGURE 8. Nitrogen flow in a microchannel, with conjugate transport in the walls. (a) Sketch of the 
microchannel; (b) Temperature distribution for different wall materials; (c) Nusselt number for 

different wall materials. 

In materials processing, the characteristics and quality of the material being processed are generally 
determined by the transport processes that occur at the micro- or nanometer scale in the material, 
for instance at the solid-liquid interface in casting or crystal growing, over molecules involved in a 
chemical reaction in chemical vapor deposition and reactive extrusion, or at sites where defects are 
formed in an optical fiber. However, engineering aspects are generally concerned with the 
commercial or macroscale, involving practical dimensions, systems and appropriate boundaries. 
Therefore, different scales arise and need to be solved by different methodologies, ultimately 
coupling the two to obtain the overall behavior. A few examples that involve these considerations 
are outlined here. 

An area in which the changes at the molecular level are considered is that of generation of thermally 
induced defects in optical fiber drawing. The differential equation for the time dependence of the E' 
defect concentration was formulated by Hanafusa et al. [17] based on the theory of the thermodynamics 
of lattice vacancies in crystals. The E   defect is a point defect, which is generated at high temperature 
during the drawing process and which causes transmission loss and mechanical strength degradation in 
the fiber. It was assumed that the E' defects are generated through breaking of the Si-O band, and, at the 
same time, part of the defects recombine to form Si-O again. The net concentration of the E' defects is 
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the difference between the generation and the recombination. The equation for E   defect concentration 
is given as [17], 
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where, dn  and dE  represent the concentration and activation energy of the E   defect;  pn  and pE  
represent those of the precursors. The initial values and constants are defined by [17]. Figure 9(a) 
shows the dependence of the average concentration of E’ defects on the drawing temperature, 
indicating an increase with temperature as expected from the higher breakage of the Si-O bond. 
Figure 9(b) shows the results for a doped fiber. Clearly, the effect can be controlled by doping and 
by varying the operating conditions, particularly the furnace temperature. Again, these effects arise 
due to the microscopic mechanisms operating at the level of the defects.  
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FIGURE 9. Dependence of average concentration of E’ defects on furnace wall temperature; (b) 

Concentration of E   defects along the centerline for various 2GeO  concentrations in a doped fiber. 

Similarly, in reactive thermal processing, such as food and reactive polymer extrusion, the 
microsopic changes in the material are linked with the operating conditions that are imposed on the 
system. The chemical conversion process is then represented by the chemical kinetics, which is 
dependent on the temperature and the concentration [18]. These microscale conversion mechanisms 
may be coupled with the flow and heat transfer in a screw extruder to obtain the conversion, 
pressure and other important quantities.  

Another area where multi-scale transport is of interest is related to environmental flows, as shown 
in Fig. 10. The heat transfer near the source in a fire or in a polluting source involves much smaller 
length scales than the transport far downstream. In thermal discharges from power plants and 
industries, the length scale is of the order of a few meters at the source and of the order or several 
kilometers far downstream [19]. In room fires, the source may only be a few centimeters, with the 
room itself being several meters in scale. The scales are further apart in large-scale fires as in forest 
fires. Again, the modeling involved near the source could be quite different from that far away. For 
instance, radiation is particularly important near the fire source. But as one moves far away, the 
flow is dominated by turbulence and buoyancy. Similar considerations apply to heat and material 
discharges into the environment. 
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FIGURE 10. Multiple length scales in a room fire and in a thermal discharge into the environment. 

3.7. Multi-objective optimization and uncertainty 

Optimization is very important in most practical systems. However, multiple objective functions are 
generally of interest. For instance, in the cooling of electronic circuitry, typical design objectives 
are maximizing the heat removal rate from the components and minimizing the pressure drop. 
These two objectives can often be treated by considering the two objective functions separately. But 
this simple approach of combining the objectives into a single function simplifies the problem. 
Weighted sums may be employed in the development of the combined objective function [20]. If 
the two or more objective functions that are of interest in a given problem are considered and a 
strategy is developed to trade-off one objective function in comparison to the others, a set of non-
dominated designs, termed the Pareto Set, which represents the best collection of designs is 
generated [2—22]. Then, for any design in the Pareto Set, one objective function can be improved, 
at the expense of the other objective function. The set of designs that constitute the Pareto Set 
represent the formal solution in the design space to the multi-objective optimization problem. The 
selection of a specific design from the Pareto Set is left to the decision maker or the engineer. A 
large literature exists on utility theory, which seeks to provide additional insight to the decision 
maker to assist in selecting a specific design. Many multi-objective optimization methods are 
available that can be used to generate Pareto solutions. Various quality metrics are often used to 
evaluate the ―goodness‖ of a Pareto solution obtained and possibly improve the method as well as 
the optimal solution. The use of this approach was demonstrated by Zhao et al. [23] for an 
electronic system cooling problem. 

A detailed study on the design and optimization of CVD systems has been carried out by Lin et al. 
[24]. Results from several trials of the numerical simulation were obtained to determine the 
operating conditions and examine the system performance. Response Surface Method (RSM) 
models were developed to study the behavior or the responses of the system with respect to the 
design variables. The optimization problem was formulated in terms of the RSM models, which 
were utilized to provide the operating conditions for higher productivity and quality of the film 
deposited.  This is the case for deterministic optimization, with a typical result shown in Fig. 12.  

However, design uncertainties arise at various points in the CVD process. Even if an optimal design 
is obtained from the deterministic optimization models, the uncertainties can cause unstable 
responses of the CVD process.  For example, the compositions of the deposition species have errors 
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on the order of 15 %. Several researchers have estimated the randomness of the operating 
parameters in the CVD process. The rate constants of the chemical reactions may also have wide 
variances. The existence of the design uncertainties is considered in the design variables, as well as 
in the inlet velocity and the susceptor temperature of the CVD process [24]. 

 
 

    

FIGURE 12. Response surface model and an optimal operating point in a typical CVD process for 
depositing a silicon thin film. 

It was shown that, due to the existence of the design uncertainties, the traditional deterministic 
optimization formulation is no longer reliable to generate safe designs because it may lead to a 
design with high risk of system failure. The development of the Reliability-Based Design 
Optimization (RBDO) algorithm evaluates the probabilities of the system failures and provides a 
more conservative design which reaches to the optimality as the failure probabilities are subject to 
some acceptable level. Finally, the productions of the thermal systems are executed based on the 
optimal design variables. If any design uncertainties are found in the experiments, the simulations, 
or the mass productions, the information on the uncertainties is fed back to the formulation of the 

FIGURE 11. Multi-objective optimization with two objective functions f1 and f2, which are to be 
minimized, showing the dominant designs, the Pareto Front and the envelope of Pareto Fronts 

for different geometric configurations. 
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RBDO problems and new optimal conditions can be generated by the proposed strategy. Figure 13 
shows the results of optimization with some deterministic and some probabilistic or uncertainty 
conditions. 

4. CONCLUSIONS 

This paper presents a wide variety of challenges faced in an accurate numerical simulation of 
practical thermal systems and processes. Material properties and validation of models are well 
known concerns. But the accurate imposition of boundary conditions, combined transport 
mechanisms, uncertainties in the design variables and operating conditions for optimization, 
additional complexities and multiple scales are other challenges that commonly arise and must be 
addressed. These aspects are considered, along with practical examples where they are of particular 
concern, and possible approaches to meet these challenges are discussed. Since system behaviour, 
response, design, control and optimization are often based on numerical simulation results, 
particularly for practical systems, it is important to obtain accurate, realistic and valid simulation 
results. This paper briefly discusses the major issues that are encountered and some of the relevant 
solutions to these. 
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FIGURE 13. Optimization with deterministic design variables and operating conditions, as well as 

with uncertainties associated with these. 
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ABSTRACT 

Jet blast deflectors (JBDs) are safety devices used on aircraft carriers to deflect aircraft exhaust 
upward to protect people and any equipment behind the JBD. As the cooling of the JBD is typically 
characterized by three-dimensional and transient heat transfer in complicated structures, JBD design 
using conventional CFD simulations is time-consuming and exhaustive. To address the issue, we 
present two cost-effective semi-empirical models, a fin analogy model and a porous medium model, 
to predict the heat transfer of forced air convection in pin-fin heat sinks under non-uniform heating 
of hot jet. Both models are experimentally validated, with excellent agreement achieved. 

Key Words: Jet Blast Deflector, Pin-Fin, Transient Heat Transfer, Non-Uniform Heating. 

1. INTRODUCTION 

Jet blast deflectors are safety devices used on aircraft carriers to deflect aircraft exhaust upward to 
protect people and any equipment behind JBDs, see Figure 1. Due to the high level of heat of the 
exhaust jet, the JBDs require effective cooling.  The next aircraft awaiting take-off is not allowed to 
roll over the JBD deck surface to avoid burning its tires (see Figure 1(a)), unless the JBD surface is 
cooled down to 200℉[1]. Therefore, the rapid cooling is meaningful to increase the frequency of 
take-off within a given period of time. Presently, cooling is actively achieved using seawater. 
However, the use of seawater causes extra weight, corrosion, and complex maintenance. Forced air 
cooling or passive cooling system has therefore attracted increasing interest.  

 
(a)                                                     (b) 

FIGURE 1. Jet blast deflector on aircraft carrier: (a) retracted position; (b) deployed to deflect the 
exhaust upward at take-off 

Due to its simple structure and high rate of heat dissipation, pin-fins have been used in a wide range 
of industrial applications, such as internal cooling of turbine blades and thermal management of 
power electronics. Here, we propose a novel JBD consisted of a pin-fin sandwich (pin-fins array 
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sandwiched between two facesheets) with forced air cooling, and analyze its transient thermal 
behaviour when its front facesheet is exposed to localized, non-uniform heating of the jet exhaust, 
as shown schematically in Figure 2.  

Computational Fluid Dynamics (CFD) has become a practical tool for the design of heat sinks. 
However, for pin-fin heat sinks under non-uniform heating of hot jet (Figure 2), the computational 
domain should cover at least one half of the heat sink and several million mesh elements are needed 
to fully realize the flow characteristics around the pin-fin units. This makes the computation time-
consuming. 

Alternatively, semi-empirical models can be used, such as the fin analogy model and the porous 
medium model widely used for extented surfaces. Whilst the fin analogy model has been 
successfully implemented for various metallic sandwich structures having periodic cores [2], so far 
only uniform thermal boundary conditions and steady heat transfer are considered, with the 
conjugate heat transfer in the facesheets ignored. The porous medium model has been utilized to 
predict the steady two-dimensional (2-D) heat transfer in pin-fin heat sinks under uniform thermal 
boundary conditions [3]. The paper aims to develop two semi-empirical models to predict the 
transient, three-dimensional (3-D) temperature fields in the pin-fin heat sink under non-uniform hot 
jet heating.  

 

FIGURE 2. Schematic of forced air convection heat transfer in pin-fin sandwich subjected to non-
uniform heating of hot jet 

2. SEMI-EMPIRICAL MODELS 

Fin Analogy Model 

In the fin analogy model, the temperature fields in the front facesheet, in the back facesheet, in each 
pin-fin, and in the convective flow are described by individual governing equations.  

The 3-D transient heat conduction equation is solved for both facesheets. Hot jet heating is imposed 
on the outer surface of the front facesheet, while natural convection and radiation boundary 
conditions are applied on that of the back facesheet. On the inner surface of each facesheet, forced 
air convection is applied to the region directly exposed to fluid flow whilst conduction boundary 
condition holds at the root of each pin-fin.  

Heat transfer in each pin-fin is described using the classical one-dimensional (1-D) transient fin 
model, with the end temperatures at the two tips of each pin-fin specified as the boundary condition. 

To solve for the distribution of fluid temperature in the pin-fin channel, the unit cell averaging 
approach is adopted, with uniform fluid temperature within each unit cell assumed. Upon analyzing 
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the heat balance of fluid flow in an arbitrary pin-fin unit cell, the differential equation for fluid 
temperature distribution in the flow plane is derived.  

All the governing equations are solved iteratively with the finite volume method.  

Porous Medium Model 

By assuming that the pin-fin array can be modelled as a porous medium, the 2-D porous medium 
model with isoflux boundary conditions used by Kim et al. [3] is extended to cover 3-D transient 
heat transfer in pin-fin heat sink subjected to non-uniform hot jet heating. The volume–averaged 
Brinkman-Forchheimer model for fluid flow and the two-equation model for heat transfer are 
solved for the porous medium region (the pin-fins channel; Figure 2). To consider the intrinsic 
anisotropic heat conduction through the pin-fins array, anisotropic solid thermal conductivity is 
assumed in the model. Heat conduction in the facesheets is coupled with forced convection to 
account for lateral heat spreading in the facesheets. 

3. VALIDATION 

To validate the two semi-empiracal models, experiments were performed to measure the temporal 
variation of front facesheet temperature at the impinging center (z = 0) for one cycle of sudden 
heating and cooling. The jet (circular hot air jet) exit temperature was set to be approximately 
140℃. Figure 3 compares the measured data with the predictions from the two models. It is seen 
from Figure 3 that, for both the heat-on and heat-off processes of the hot air jet, the model 
predictions agree well with the experimental measurements, within the estimated experimental 
uncertainty of 7.3%.  

 

FIGURE 3. Transient temperature at impinging center: comparison between model predictions and 
experimental measurements 

4. RESULTS 

The experimentally validated semi-empirical models are used to design pin-fin sandwichs for JBD 
application. Note that, although in the present experiments hot air jet was employed to simulate the 
actual flame exhaust, the validated models can be used for many different heating conditions by 
modifying the boundary condition applied at the impinging surface of the front facesheet. Here, by 
using the non-uniform heat flux distribution of propane torch determined by Carbajal et al. [4] as 
the boundary condition, the instantaneous temperature contours on the front surface of the pin-fin 
sandwich are predicted with the fin analogy model. The results are plotted in Figure 4: the 
maximum temperatures coincide with the impinging center, and it is remarkable that the thermal 
footprints of the pin-fins on the facesheet are clearly captured by the fin-analogy model. 
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The fin analogy model can predict the local thermal behavior around each pin-fin in the facesheet, 
enabling the evaluation of thermal stresses at the pin-fin root. High thermal stresses at the roots may 
cause local failure. In comparison, the porous medium approach employs the volume-averaging 
technique, thus unable to predict local thermal distributions. Further, the fin analogy model can be 
extended to cover lightweight sandwich panels with periodic lattice truss cores, which are 
promising for JBD applications due to their combined structural load bearing and heat transfer 
capabilities [2].  

 

          

FIGURE 4. Instantaneous temperature contours on front surface of pin-fin sandwich subjected to 
flame jet heating: prediction with fin analogy model 

4. CONCLUSIONS 

Two semi-empirical models - fin analogy model and porous medium model - are developed to 
predict 3-D transient convective heat transfer of pin-fin heat sinks. Experimental measurements are 
carried out to validate the two models, with excellent agreement achieved. Amongst the two models, 
the fin analogy model is more attractive as it can predict local thermal behaviors around each pin-
fin root, thus useful for subsequent thermomechanical analysis (e.g., calculation of thermal stresses 
at the pin-fin roots). In addition, it can be extended to cover the structurally efficient sandwich 
structures with periodic lattice truss cores that have been suggested for air-cooled JBD 
applications [2]. 
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ABSTRACT 

We show a solution for a realistic tunnel fire simulation using a 2D-3D coupling strategy and a full 
multiphysics model for concrete (2D sections), known also as three fluids model (water, vapour, dry 
air). The computing times are too high for a real time solution. We investigate the applicability of 
the proper generalized decomposition (PGD) to obtain two goals: achieve a full 3D solution for the 
solid domain and reduce simultaneously the computing time. The first results are encouraging. 

Key Words: Proper generalized decomposition, Fire in tunnels, Concrete. 

1. INTRODUCTION 

The availability of an efficient tool for simulation of a fire scenario in a tunnel is of paramount 
importance for fire safety management in emergency situations, for training of fire brigades prior to 
emergency cases in order to be able take the right decisions when needed and to evaluate measures 
geared to increase the resistance of existing tunnel vaults against spalling. We have developed such 
a tool which takes the thermal fluid-structural coupling in a tunnel fire fully into account [1]. It 
appears as one of the largest coupled problems actually solved in the community of computational 
interaction problems. The simulation of a realistic fire scenario is still a time consuming task and 
the tool is not yet completely ready for the first of the above mentioned three goals. One of the 
bottlenecks is the heavy computational burden linked with the three fluids model for concrete. It is 
not possible to disregard the enormous heat sink the tunnel vault represents with the phase changes 
and chemical reactions going on in heated concrete. Such an omission can yield temperature fields 
also some 1000°C above measured ones in an experiment. On the other hand simplifications of 
these phenomena are not possible as highlighted in two recent companion papers [2,3]. In the 
existing model [1] we have chosen a 3D-2D coupling strategy where the thermally driven CFD part 
is solved in a three dimensional cavity i.e. the tunnel, and the concrete part is solved on 2D sections 
normal to the tunnel axis, at appropriate intervals, see Fig. 1. The heat flux and temperature values 
which serve as coupling terms between the fluid and the structural problem are interpolated between 
the sections. With this approximation the heat transfer in the tunnel vault in the direction of the 
tunnel axis is disregarded. The aim of our current research effort is twofold: realize a true 3D-3D 
coupling on one hand and reduce drastically the computing time on the other hand. The way for 
achieving this is through adoption of an extremely fast equation solver which can achieve a speed-
up of up to 3600 times [4] and the adoption of the Proper Generalized Decomposition PGD [5] for a 
fast 3D solution of the problem of heated concrete. Steps in this direction as well as the general 
model will be shown. 

2. FULL 3D SOLUTION OFHEATED CONCRETE WITH PGD 

In the case of the complex behaviour of the tunnel vault (transient and non-linear coupled multi-
physic models) we would like to avoid the above mentioned 3D to 2D dimensionality reduction. 
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Because of the richness of the thickness description due to many coupled physics with strong and 
fast evolutions in the thickness direction, a full 3D descriptions may involve millions of degrees of 
freedom in the solid domain that should be solved many times because of the history dependent 
chemo-hygro-thermo-mechanical behaviour. Today, the solution of such fully 3D models remains 
intractable for large size problems despite the impressive progress made in mechanical modelling, 
numerical analysis, discretization techniques and computer science during the last decade. New 
numerical techniques are needed for approaching such complex scenarios, able to proceed to the 
solution of fully 3D multiphysics models in geometrically complex parts. The well established 
mesh-based discretization techniques fail because of the excessive number of degrees of freedom 
involved in the fully 3D discretizations where very fine meshes are required in the thickness 
direction (despite its reduced dimension) and also in the in-plane directions to avoid too distorted 
meshes. A way to solve this problem is the adoption of the Proper Generalized Decomposition 
(PGD), [6]. In what follows we use the construction of the Proper Generalized Decomposition of a 
model defined in tunnel shell IΞ = Ω×  with 2( , )x y= ∈Ω⊂ℜx  (the tunnel transverse section) 

and z !I = 0,L"# $%  its axis. In the following we show an application of the 2D-3D coupling strategy 
for a 20MW fire in a tunnel and a PGD solution for the heat transfer problem only. 

3. TUNNEL FIRE: EXAMPLE OF THE 3D-2D COUPLING STRATEGY 

The structure under consideration is the tunnel of Virgolo close to Bolzano (Italy) that has been also 
used for an experimental test in the framework of UPTUN project [7]. We have considered the 
central part of the tunnel, 80 m long. Its geometry is decomposed in the fluid and the solid domains, 
see Fig. 1. The solid domain consists in the cross section of the tunnel vault. In the simulations five 
cross sections are considered at 0, 30, 40, 50, 80 meters along the longitudinal axis z. The location 
of fire is the section at 40 m. 

A  B 

FIGURE 1. Geometry of the tunnel: (A) 3D fluid domain, (B) 2D solid domain (i.e. tunnel cross 
section) 

The total thermal power involved by the fire is increasing in 10 minutes up to 20MW following a 
linear law and then kept constant. For this analysis 15300 hexaedral elements are used in the fluid 
domain, while each cross section is discretized with 640 quadrilateral elements with eight nodes. 
For further information about the properties of the fluid and the concrete used in the vault of the 
tunnel, the reader is referred to [1]. For sake of brevity here we report only the main result of the 
calculation in terms of temperature distribution in solid and fluid domain, Fig. 2. 

4. HEAT TRANSFER SIMULATION IN THE TUNNEL VAULT WITH PGD 

In this section we present some preliminary results of the simulation of the tunnel fire described 
above obtained by applying the Proper Generalized Decomposition techniques illustrated in section 
2. 
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FIGURE 2. Temperature distribution (K) at t = 3600 s in the fluid domain and in sections S2, S3 

(fire), S4 

The main aim of this calculation is to demonstrate the validity of the approach considering, as initial 
stage of the on-going research, a simplified model limited to heat transfer through conduction. The 
mesh used in the same as in the previous example in the transversal section, but using nine-noded 
elements, while in the longitudinal direction 8000 elements have been used. The duration is 1 hour 
with a time step of 1 sec. As already pointed out the problem is solved assuming some 
simplifications as far as both the physical problem and the boundary conditions are concerned. The 
concrete vault is treated as a solid domain for which only the pure conductive thermal problem is 
considered, neglecting convective transfer of energy, phase changes and the mass transport inside 
the pores of the material. The boundary conditions consist in the definition of a normalized thermal 
flux on the inner surface of the tunnel vault according to the following formula: 

norm. heat flux = F
!
!( )! Fz z( )! Ft t( )  

in which the distribution functions in space and in time are shown in Figure 3B: θ is the angle (from 
the pavement) identifying the position of the point of the heated surface of the cross section on 
which the normalized flux is computed. The whole 20 MW power is applied directly to the heated 
surface without taking in to account the role played by air, i.e. by using Neumann condition instead 
of Robin condition defined trough a heat exchange coefficient α between the surface of concrete 
structure and the surrounding fluids. Because of this we expect a large difference in terms of 
temperature field between the solution obtained by means of PGD and the original one obtained by 
using the full model. The results of PGD analysis are depicted in Figure 4. The results shown in 
Figure 4 have been obtained by using 13 modes and took 2 min and 30 sec of computational time 
on a standard INTEL cpu based computer using MATLAB. A fast check has shown that the 
computed stored energy in the concrete vault after one hour equals the heat input. The time span is 
too short for heat flux to reach the boundary to the surrounding rocks, see the temperature gradient 
in Figure 4B. The surface temperatures reached are comparable to the ones obtained with the full 
model, [1], in the case of pure CFD simulations for which the solid domain is neglected together 
with the related heat exchange fluxes. In that case the temperature values were much higher than 
those obtained with the model of section 3 and approximately equal to 4000 K [1], that is the same 
order of magnitude of thermal field attained by using PGD in this work. 
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A B 

FIGURE 3. Sketch of the mesh (A) and of the bc.s (B) used in the case of tunnel fire solved by PGD 

A B 

FIGURE 4. Temperature distribution along z-axis (A) and in the thickness of the central cross section 
of the tunnel (B) obtained from PGD analysis 

5. CONCLUSIONS 

We have shown a 3D-2D coupled solution for a tunnel fire simulation, taking the three fluids 
concrete model into account. For a fire of a duration of one hour the calculation time on a PC is 
well over one day. For the thermal problem in the tunnel vault a PGD approach on a full 3D solid 
domain model has been shown. The computing time was reduces to two and half minutes. 
Considering the short computational time and the fact that it is possible to obtain physically 
reasonable results just by introducing in PGD analysis more sophisticated physical models and 
physically correct bc.s (i.e. taking into account the role of the air), this set of preliminary 
computations are extremely encouraging. 
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ABSTRACT 

Successful modeling and/or design of thermo-fluid and energy systems often requires one to 
address the impact of multiple “design variables” on the prescribed outcome. There are often 
multiple, competing objectives based on which we assess the outcome of optimization. Since 
accurate, high fidelity models are typically time consuming and computationally expensive, 
comprehensive evaluations can be conducted only if an efficient framework is available. 
Furthermore, informed decisions of model/hardware’s overall performance rely on an adequate 
understanding of the global, not local, sensitivity of the individual design variables on the objectives. 
The surrogate-based approach, which involves approximating the objectives as continuous 
functions of design variables from limited data, offers a rational framework to reduce the number of 
important input variables, i.e., the dimension of a design or modeling space. In this paper, we 
discuss the fundamental issues that arise in surrogate-based analysis and optimization, highlighting 
concepts, methods, techniques, as well as practical implications. To aid the discussions of the issues 
involved, we will summarize recent efforts in investigating cryogenic cavitating flows, active flow 
control based on dielectric barrier discharge concepts, and Li-ion batteries. 

Key Words: Surrogate modeling, Cavitation, Dielectric barrier discharge, Lithium-ion battery. 

1. INTRODUCTION 

The notion of design variables influencing system performance can be found in numerous thermo-
fluid and energy systems. In the computational modeling context, the design variables can be 
adjustable parameters associated with a given mathematical model under different operating 
conditions and scaling parameters. In the hardware design context, they are often geometry, 
materials, and operating variables. In both situations, there are often multiple, competing objectives 
based on which we assess the outcome of optimization. Since accurate, high fidelity models are 
typically time consuming and computationally expensive, comprehensive evaluations can be 
conducted only if an efficient framework is available. Furthermore, informed decisions concerning 
a model or hardware system’s overall performance rely on an adequate understanding of the global, 
not local, sensitivity of the individual design variables on the objectives. 

In reality, most engineering system and modeling designs are conducted as open loop, feed-forward 
processes. For example, for turbine design in aerospace and mechanical engineering, one design 
iteration for a given set of engine balance conditions may currently take up to several weeks, with 
just the blade geometry design sub-iteration phases taking several days each. The quest for an 
acceptable blade surface velocity distribution is accomplished with many ad hoc rules in what is 
essentially a manual trial-and-error process. A systematic approach capable of identifying design 
optimality and comparing possible trade-offs can significantly improve the productivity and shorten 
the design cycle. 

Objective and efficient evaluation of advanced designs can be facilitated by development and 
implementation of systematic optimization and sensitivity evaluation methods. To date, the majority 
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of the effort in design optimization has relied on gradient-based search algorithms. These methods 
work iteratively through a sequence of local sub-problems, which approximate objective and 
constraint functions for a sub-region of the design space, e.g., by linearization using computed 
sensitivities. Major challenges for these optimization approaches are the robust and speedy 
computation of sensitivity coefficients. 

Yet despite recent research advances, formal design optimization has yet to see practical use in real 
design scenarios. The reasons are several-fold: 

(i)   The objective functions are likely to be multi-modal or discontinuous over the broad design 
space, rendering gradient search methods insufficient by themselves. Additionally, the usual 
practice to combine multiple goals into a single quantitative objective function is too restrictive. 
Qualitative goals are often required to correctly characterize a problem (e.g., maximizing a 
turbine blade’s aerodynamic efficiency with a smooth, monotonic surface velocity distribution, 
while spreading heat load as uniformly as possible). These goals may have arisen from diverse 
disciplines and are usually treated sequentially by different groups. 

(ii)  It is inadequate to think of the final product of a design process as a mere geometry. A “design” 
really encompasses a whole set of operating, manufacturing, and project level decisions. 

(iii) As the interaction between numerical simulation and physical test data becomes stronger, the 
future engineering knowledge base is likely to consist of various heterogeneous data sources 
including experimental data, past product experiences, semi-empirical modeling, and high 
fidelity simulations. Some data are anecdotal; others cover only small “patches” of the physical 
domain but are still useful for “reality checks”. A unified framework needs to be constructed 
for representation, capturing and mining of all these data types so the response functions can 
be continuously improved. 

The surrogate-based approach is an excellent technique for analysis and probing of such issues. It 
also offers a rational framework to reduce the number of important input variables, i.e., the 
dimension of a design or modeling space. The surrogates can be constructed using data drawn from 
pre-computed high-fidelity simulations and physical measurements, and provide fast evaluations of 
the various modeling and design scenarios, thereby making sensitivity and optimization studies 
feasible. As discussed by Shyy et al., they have several advantages when compared to local 
gradient-based methods: 

(i)   They do not require calculation of the local sensitivity of each design variable, 

(ii)  They can utilize the information collected from various sources and by different tools, 

(iii) They offer multi-criterion optimization, 

(iv) They can handle the existence of multiple design points and trade-offs, 

(v)  They easily perform tasks in parallel, and 

(vi) They can often effectively filter the noise intrinsic to numerical and experimental data. 

However, there are uncertainties in predictions using this approach, such as empiricism in 
computational models and surrogate model errors. We have developed methods to estimate and to 
reduce such uncertainties using multiple criteria because a single criterion may underestimate the 
error. We have advanced the techniques of using an ensemble of surrogates to reduce uncertainties 
in selecting the best surrogate and sampling strategy. We have also developed an averaging 
technique for multiple surrogates that protects against poor surrogates and performed at par with the 
best surrogate for many problems. 

In this paper, we discuss the fundamental issues that arise in surrogate-based analysis and 
optimization, highlighting concepts, methods, and techniques, as well as practical implications. To 
aid the discussions of the issues involved, we will summarize recent efforts in investigating 



 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 

cryogenic cavitating flows, active flow control based on dielectric barrier discharge concepts, and 
lithium-ion batteries. In cavitating flows of cryogenic fluids, such as liquid nitrogen and hydrogen, 
thermal effects are very important. Surrogate-based analysis has been used to investigate the 
importance of two adjustable parameters, which regulate the strength of the evaporation and 
condensation rate in the cavitation model, and the sensitivity of the thermal-sensible fluid properties, 
including latent heat and vapor phase density. The surrogate-based strategy has also been used to 
establish appropriate values for these empirical constants. For the dielectric barrier discharge (DBD) 
actuator, the impact of the applied voltage frequency, the insulator dielectric constant and the 
polarity time ratio of the voltage waveform on the net force generation and required power are 
examined. Multiple surrogate models consistently identify two branches of the Pareto front where a 
positive x-directional net force requires relatively low power, while a negative net force requires 
high power. Moreover, global sensitivity analysis indicates that the voltage frequency and polarity 
time ratio are important in only some portions of the design space, while the dielectric constant is 
always important. A lithium-ion battery cell has also been analyzed using a surrogate modeling 
framework to map the effect of cycling rate, cathode particle size, and diffusion coefficient and 
electrical conductivity of the solid cathode material on the energy storage. Through global 
sensitivity analysis the relative impact of the various parameters can be quantified under different 
scenarios. The design space is split into distinct regions based on characteristic discharge and 
diffusion time scales for separate, more refined analysis. A Pareto front is constructed to quantify 
the tradeoff between maximum achievable energy and power levels. 

2. CONCLUSIONS 

Surrogate modeling and analysis offers a unique design tool for each of these problems: 

(i)   The surrogate analysis is used to assess 

(a) the sensitivity of the cavitation model to parameters and uncertainties in the thermal-
sensible material properties, 

(b) impact of waveform, frequency and dielectric constant on DBD performance, and 

(c) the relative importance of discharge rate, particle size, diffusivity and conductivity of 
battery performance. 

(ii)  The surrogate models can be particularly useful in analyzing competing objectives, such as the 
accuracy of temperature and pressure prediction in cavitation, power input and force generation 
in DBD, and specific energy and power in lithium-ion batteries. 

(iii) The surrogate-based global sensitivity analysis facilitates identification of dominating and less-
influential design variables. Based on the insight gained, dimensionality reduction can be 
conducted to reduce the complexity of the issues. This benefit is particularly significant for 
complex problems which are expensive to simulate/test and involve a large number of design 
variables. For instance, it is shown that 

(a) the condensation term has minimal influence on the cavitation model compared to the 
evaporation term, 

(b) the dielectric constant is always influential, but the importance of frequency and time ratio 
alternates depending on low and high power capabililty, and 

(c) the dimensionality of the battery case can be reduced based on the diffusivity of the solid, 
which could be ignored from the analysis beyond a certain critical value. 

(iv) In addition to sensitivity analysis, surrogate tools offer the capability to identify optimal 
solutions in regions where competing objectives may be present. In such cases, construction of 
a Pareto front can assist in elucidating the gain achieved by sacrificing the other objectives. In 
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the context of the case studies presented, we show that multiple Pareto fronts, which may be 
disconnected with each other, may also exist, as evident in the case of DBD. For cavitation, it 
was shown that a selected value of the evaporation model parameter minimizes the pressure 
difference through a small penalty in the temperature difference. Since pressure prediction is 
more critical in design of components that may be subjected to heavy loads, the tradeoff 
between pressure and temperature is beneficial in this situation. In the case of lithium-ion 
batteries, the high slope of the Pareto front suggests that substantial gain in power, which is 
desirable for power-tools and automotive applications, can be achieved through minor sacrifice 
in energy storage. 

In summary, we have developed a surrogate-based framework to assess the role of design variables 
on multiple competing objectives for a wide range of engineering problems. The framework allows 
for both local and global domain refinement strategies to be utilized in conjunction with multiple 
error criteria to estimate and reduce uncertainties, since a single criterion may lead to high errors. 
These techniques prove to be very valuable in advancing the capabilities of surrogate modeling. 
Similar approaches can be extended to numerous other thermo-fluid and energy systems. 
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ABSTRACT 

The multiscale problems in the thermal and fluid science are classified into two categories: 
multiscale process and multiscale system. Examples are provided for multiscale process and 
multiscale system. The focus of this presentation is at the multiscale process. The numerical 
approaches for multiscale processes have been reviewed. Several numerical examples of multiscale 
process are presented.  

Key Words: Multiscale Simulation, Reconstruction Operator, Interface Coupling. 

1. INTRODUCTION 

The multiscale problems in the thermal and fluid science are classified into two categories: 
multiscale process and multiscale system [1,2]. In this presentation focus is put on the simulation of 
multiscale process. Turbulent flow is a typical example of multiscale process which involves many 
different length scales of eddies. The launching process of a space craft provides another example 
where the fluid flow around the spacecraft experiences different gas flow regimes from the earth’s 
surface to the outer space. The third example is the transport process in a proton exchange 
membrane fuel cell (PEMFC), where the fuel gas flow in polar plate channels occurs at the length 
scale of centimeters, the diffusion process in the gas diffusion layer and the transport of proton in 
the membrane occur at the order of hundreds of micrometers, while the reaction in the catalyst 
happens in a thickness of tens or even several micrometers. Now attention is turned to the 
multiscale system. By multiscale system we refer to a system that is characterized by large variation 
in length scales in which the processes at different length scale often have the same governing 
equations and are not so closely related as in the first category. The cooling of an electronic system 
is such a typical multiscale system[3,4]. In these two papers a top-to-down sequential multilevel 
simulation method with increasing fineness of grids was proposed. Since the simulation methods at 
the different levels in such multiscale system are all of continuum type, and [3,4] have given clear 
presentation, the numerical method for the  multiscale  system will  not be further discussed in this 
presentation. The numerical approaches for multiscale processes have two categories: one is the 
usage of a general governing equation and solving the entire flow field involving a variation of 
several orders in characteristic geometric scale. The other is the so-called “solving regionally and 
coupling at the interfaces”. In this approach the processes at different length level is simulated by 
numerical methods at different geometric scales (macro, meso and micro scales) and then 
information is exchanged at the interfaces between different regions. The key point is the 
establishment of the reconstruction operator, which transforms the data of few variables of 
macroscopic computation to large amount of variables of microscale or mesoscale simulation. In the 
following the reconstruction operators which are developed in the authors’ group and for the 
transformation of macroscopic variables to the density distribution function in LBM are introduced 
and two numerical examples of multiscale simulation are presented. 

2. MAJOR NUMERICAL APPROACHES FOR SIMULATING MULTISCALE PROCESS 
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For the numerical modeling of multiscale processes in engineering thermal and fluid science, two 
types of numerical approaches may be classified. They can be described as: (1) “Using uniform 
governing equation and solving for the entire domain”; (2) “Solving problems regionally and 
coupling at the interfaces”. The direct numerical simulation (DNS) is a typical example of the first 
numerical approach [5]. This method is very time-consuming, so we will not go further for this 
method. In the following focus will be put on the second approach.  

The second approach is the most widely used one. In this approach the process at different length 
level is simulated by different numerical method and then information is exchanged at the interfaces 
of different regions. If the exchange of information at the interface (“hand-shaking” region) is 
performed via Dirichlet type, then it can be mathematically expressed by : 

DU uC ;  Du U R                                                           (1) 

where U and u are the macroscopic parameter and microscopic/mesoscopic parameter respectively. 
CD and RD are the Dirichlet compression and re-construction operators, respectively. 

At the interface between different regions, there will be a mismatch in the kind and number of 
variables used by the different regions. The Dirichlet compression operator CD, which extracts the 
macroscopic parameters from a large amount of data at micro or mesoscale level by some averaging 
or integrating principles, is easy to be defined, but the reconstruction operator RD, which should 
prolong small amount of macroscopic parameters into a large amount of parameters at mesoscale or 
microscale is quite difficult to be constructed. Here we meet a one-to-many problem since the 
macroscopic variables have to be mapped to more LBM (DSMC or MDS) variables. The design of 
the compression and re-construction operators should abide by some basic physical laws or 
principles, such as mass conservation, momentum and energy conservation. In addition the operator 
should be mathematically stable, computationally efficient and easy to be implemented. In a word, 
the exchange of information should be conducted in a way that is physically meaningful, 
mathematically stable, computationally efficient and easy to be implemented. It should be noted 
that by the terminology “ operator” we mean: (1) It is an actual mathematical formula  for 
transferring (converting) results of different regions at the interface; or (2) It is a set of numerical 
treatments for transferring information which are developed from some fundamental considerations. 
At the present，the 2nd one is the most frequently encountered situation. In the following some 
existing coupling principles are presented. 

3. EXAMPLES OF NUMERICAL SIMULATION OF MULTISCALE PROCESS 

Coupling between MD and FDM 

In 1995 O’Connel and Thompson proposed a way for coupling the simulation by MDS and by FDM 
[6]. This is the first paper in the literature initiating the coupled MDS-macroscale simulation. In 
their paper the coupling is achieved by constraining the dynamics of fluid molecules in the vicinity 
of the MDS-continuum interface to meet the requirement of mass and momentum continuity. The 
different solution regions are shown in Fig. 1 , where the interface is referred to as hybrid solution 
interface (HSI). The MDS portion of the computation is beyond the HSI (shown by the open 
circles), introducing an overlap region. Continuity of mass flux at the HSI is achieved by supplying 
the velocity boundary condition for the continuum region by the averaging results of the MDS over 
the zero bin shown in Fig. 1. Ensuring the momentum conservation in the HSI region is a more 
subtle issue because as indicated above in the MDS simulation there is not any constitutive 
equations for stress. In order to ensure the continuity of momentum (stress) it is required that in the 
overlap region within any bin shown in Fig. 1, following constraint should be satisfied: 

( ) ( ) 0
1

N j j jp M vn xn
  


                                                 (2) 
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where Nj is the total number of molecules in the jth bin and pn is the momentum of the nth 
molecule in the x direction, M(j) denotes the mass of the continuum fluid element corresponding to 
the jth bin, and ( )j

xv is the velocity. Obviously Eq.(2) requires that in the jth bin the x-direction  
momentum computed from micorscale results and macrosacle results should be identical. By 
integrating this equation with time a holonomic constraint can be obtained and it is incorporated 
into Lagrange’s equation for any molecule in the jth bin. This constraint is implemented for all the 
molecules in the bins within the overlap region, thus the momentum conservation requirement is 
fulfilled. 

Since this pioneering work a number of MDS-continuum coupling researches have been published 
for different flow and heat transfer cases with focus being put on the improvement of coupling 
stability, accuracy, and efficiency. The details in the improvements of coupling methods are not 
stated here because of space limitation .  

 

FIGURE 1.  Schematic for the coupling between MD and continuum method [6] (Used with 
permission) 

FLUID FLOW AROUND/THROUGH A POROUS MEDIA SQUARE CYLINDER 
SIMULATED BY COUPLED LBM/FVM 

In [7] the flow around and through a porous media square cylinder is simulated by  coupled FVNM 
and LBM (CFVLBM), fully showing the role of LBM in displaying the flow details in complicated 
configuration. Flow simulation results by CFVLBM is presented in Fig. 2 (a) and (b). It would be 
very difficult (if not impossible) for FVM to obtain such fine flow resolution. To compare the 
computational time for flow around a solid square cylinder, three numerical methods have been 
used: LBM, multi-block LBM and CFVLBM. Fig. 2  (c) shows the three-block structure used in the 
simulation. In the multi-block LBM the grid system in the center black region is the finest where the 
porous media cylinder locates and that of the outside region is the coarsest.  Results show that the 
CFVLBM is much faster than the multi-block method.  The transformation of the macro-velocity to 
the mesoscale parameter, the density distribution function of the LBM is conducted by the 
reonstrction operator proposed by the authors’ group [1,2,8] : 

 (eq) 2 2 11i i i s i x x xf f tU c U u u S
                  

                        (3) 

where ( )eq
if is the equilibrium density distribution function; sc is the lattice sound speed; S is the 

stress tension in ,  coordinates;  is the nondimensional relaxation time; t  is the time step;   
is the kinematic viscosity;   is the fluid density; i iU c u    , and u is the velocity in   

direction; x xS u u
       . 
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FIGURE 2. Flow around/through a porous square cylinder 

4. CONCLUSIONS 

Most phenomena and processes in science and engineering are multiscale in nature. With the rapid 
development in science and technology the importance of study from multiscale view point 
becomes more and more obvious. In heat transfer field multiscale problems may be classified as 
multiscale process and multiscale system. For the multiscale process the method of “solving 
regionally and coupling at the interfaces” is the most promising one. In such method the key issue is 
the exchange information at the interfaces. The exchange of information should be conducted in a 
way that is physically meaningful, mathematically stable, computationally efficient and easy to be 
implemented. Further researches are highly required to establish robust and quick-convergent 
numerical solution approaches. 
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ABSTRACT 

Our study deals with the understanding of drop dynamics during partial coalescence. When liquid 1 
drop falls through liquid 2 to eventually hit the liquid 2-liquid 1 interface, its initial impact on the 
interface can produce daughter droplets of liquid 1. Results show that inertia and interfacial surface 
tension forces largely govern the process of partial coalescence. Below the specified lower bound 
and above the specified upper bound, the partial coalescence is suppressed by the viscous force and 
gravity force, respectively. The process of partial coalescence is also observed for multiple drop 
impact where the process of pinch off is different. 

Key Words: Partial Coalescence, Secondary drops, Ohnesorge number. 

1. INTRODUCTION 

Multi-fluid systems play an important role in many natural and industrial processes such as bubble 
column reactor, boiling, ink jet printing, painting, biological systems, rain drop impact phenomenon 
etc to mention few. A full understanding of the behavior of multiphase flows is still lacking, 
although a number of experimental, theoretical analysis and numerical studies have addressed this 
problem.  The various numerical techniques used to solve these multi-fluid systems are like volume 
of fluid method (VOF), level set method (LS), coupled level set and volume of fluid method 
(CLSVOF), front tracking method (FT) etc. We have used the CLSVOF method [1] to explore the 
partial coalescence phenomena during drop impact on liquid-liquid interface. When a drop of liquid 
1 impacts a liquid 1-liquid 2 interface, the impact either generates a daughter/secondary droplet of 
liquid 1 or the impacting drop is absorbed without engendering a secondary droplet. The first case 
will be referred to as a partial coalescence and the later as complete coalescence. Generation of 
secondary drop is observed for systems of lower Ohnesorge number for liquid 1, lower and 
intermediate Ohnesorge number for liquid 2 and for low and intermediate values of Bond number. 
Whenever the horizontal momentum in the liquid column is more than the vertical momentum, 
secondary drop is formed. A transition regime between partial and complete coalescence with 
increasing Ohnesorge number is defined. In this regime the neck oscillates twice before collapsing 
into the liquid. For further increase in Ohnesorge number the oscillation again reduces to one. In 
order to have secondary droplets in the complete coalescence regime, when multiple drops are made 
to impact then again the partial coalescence phenomena occurs. 

2. MAIN BODY 

Complete numerical simulation of the processes of partial coalescence is performed for two-
dimensional incompressible flow which is described in axisymmetric coordinates as shown in 
Figure 1. 

The mass and momentum conservation equations for the incompressible Newtonian fluids for the 
two liquid phases are given by, 

 0 V  (1) 
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   
T

sP
t

    
                 

V VV g V V n  (2) 

where   is the surface tension force, n  is the unit normal vector at the interface,  is the 
curvature of the interface, s  is the surface delta function. 

 

FIGURE 1. Computational domain 

The level-set function chosen here is maintained as the signed distance from the interface close to it. 

The unit normal vector and the mean curvature are simply,  /   n  and  /       
respectively. Using the level-set formulation the momentum equation for incompressible two-phase 
flow becomes 

               
T

P H
t

        
                  

V VV g V V  (3) 

The interface is captured by solving the advection for the level-set function   and for the volume 

fraction F  in its conservative form,   0
t





 


V ,   0F F
t


  


V . 

Void fraction F  is introduced as the fraction of the liquid inside a control volume (cell), where the 
void fraction taking the values 0 for lighter liquid (liquid 2), 1 for heavier liquid (liquid 1) cell and 
between 0 and 1 for a two-phase cell. The boundary conditions are symmetry or free slip condition 
at the left and right boundaries. Outflow boundary conditions are used on the top surface of the 
domain. No slip and impermeability (wall) conditions are used on the bottom surface of the domain. 

3. RESULTS 

Charles & Mason [2] have suggested that the partial coalescence was due to a Rayleigh-Plateau 
instability. Blanchette & Bigioni [3] have argued that it is the convergence of the capillary waves on 
the drop apex which leads to secondary drop pinch off. Recently Gilet et al. [4] have shown that the 
convergence of the capillary waves cannot be the only mechanism responsible for partial 
coalescence. They showed that when Oh1 is high, a mechanism is responsible for enhancing the 
emptying of the droplet, resulting in a premature total coalescence. Inversely, when Oh2 is high, 
another mechanism has to aid the horizontal collapse. However, when Oh2 is too large, it has an 
opposite effect of weakening of the horizontal collapse. From our simulations it is seen that the 
important criterion for partial coalescence is the increasing horizontal momentum of the drop 
relative to the vertical momentum. This can be accomplished either by changing the viscosity or by 
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changing the gravity within limits. Figure 2 depicts the dominant movement in six different cases. 
The dotted line indicates the initial liquid/liquid interface. When Oh1 ≈ Oh2, the liquid column is 
stretched upwards to a long height and liquid 2 forces inwards to promote pinch off. For Oh1 < Oh2, 
the height of the liquid column is lower due to the higher viscosity of liquid 2, but the higher 
viscosity increases the horizontal collapse. So the drop pinches off before collapsing. During the 
case, Oh1 << Oh2, at very high viscosity of liquid 2, the pinch off is prevented and viscous liquid 2 
pushes the entire drop to coalesce completely. For Oh1 > Oh2, due to the high viscosity of liquid 1, 
the capillary waves get damped out and the drop coalesces totally. It can be concluded that for a low 
Oh1 value (= 0.0058), when (Oh1/Oh2) ≈ 1, the pinch off of secondary drop occurs. As this ratio 
decreases to 0.1, the partial coalescence phenomenon still occurs but as the ratio is further 
decreased to 0.01, there is no more pinch off. In contrast, for a low Oh2 value (= 0.0058), as Oh1 is 
increased by a small amount, Oh1 = 0.0412 (Oh1/Oh2 ≈ 10), the drop completely coalesces. In the 
case of a high viscosity of liquid 1, more mass of liquid 2 is displaced. Hence as Oh1 is increased, 
an additional movement is induced which tends to accelerate the emptying of the droplet. More 
viscous diffusion leads to vertical collapse of the liquid column. In liquid 2, such an induced 
movement enhances the horizontal collapse. When Oh2 is intermediate, the horizontal collapse is 
confined to regions lower than the equator of the initial droplet, and this leads to partial coalescence. 
In contrast, when Oh2 is high, the viscous diffusion entrains liquid 1 at higher latitudes and the 
vertical extension of the horizontal collapse is greater, so the coalescence becomes total. For Oh1 ≈ 
Oh2 and intermediate Bo, the pinch off is similar to that in the first case, but as can be seen from the 
figure, the necking is below the initial liquid/liquid interface due to more downward pull. When 
(Oh1 ≈ Oh2, high Bo) shows the total collapse of the drop due to the large downward vertical 
movement of the drop for high gravitational pull. 
 

 

 

 

 

 

 

 

 

 

FIGURE 2. The different flows during (a) partial coalescence and (b) complete coalescence. 

Thus it is seen that whether the drop will completely coalesce or it will pinch off secondary droplet 
depends on the dominant direction of flows acting on the drop. The detailed parametric study is 
done and reported in Ray et al. [5]. The partial coalescence phenomenon occurs for low impact 
velocity of the impacting drop. The free surface deformation is shown in Figure 3(a), along with the 
experiments of Chen et al. [6]. Complete coalescence can be prevented when another drop impacts 
the liquid during the coalescing process of the first drop as shown in Figure 3(b). 

 

 

(a) 

(b) 
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FIGURE 3. Partial coalescence phenomena with 
(a) single drop impact, (b) multiple drop impact, (c) coalesced drop impact. 

In some cases partial coalescence also occurs when two drops coalesce before impacting to the 
liquid surface. On impact the liquid from the coalesced drop drains in the liquid. Due to more 
horizontal momentum by the surrounding liquid necking occurs leading the pinch off. 

4. CONCLUSIONS 

In the present work we have numerically established that it is the competition between the 
horizontal and vertical momentum of the drop which determines the transition between the two 
regimes of coalescence. The capillary wave converges at the drop apex. Furthermore, when the 
horizontal momentum exceeds the vertical momentum, a daughter drop pinches out. Different 
forces for different flow parameters determine the outcome. Multiple drop impact also exhibits 
partial coalescence phenomena when the drops fall one after another within very small time gap 
with low impact velocity. 
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ABSTRACT 

Structure of a new meshless solution method for calculation of one-domain coupled macroscopic 
heat, mass, momentum and species transfer problems as well as phase field concepted models and 
cellular automata models of microstructure evolution is represented. The solution procedure is 
defined on a set of nodes which can be non-uniformly distributed. The domain and boundary of 
interest are divided into overlapping influence areas. On each of them, the fields are represented by 
the multiquadrics radial basis functions collocation or least squares approximation on a related sub-
set of nodes. The transition rules are defined for a set of nodes on the influence area in case of 
cellular automata (CA) modelling. The time-stepping is performed in an explicit way. All governing 
equations are solved in their strong form, i.e. no integrations are performed. The polygonisation is 
not present. The possible growth of the domain (like in the problems of die casting or continuous 
casting) is described by activation of additional nodes and by the movement of the boundary nodes 
through the computational domain, respectively. The solution can be easily and efficiently adapted 
in node redistribution and/or refinement sense, which is of utmost importance when coping with 
fields exhibiting sharp gradients (phase field variable or enthalpy, for example). Step by step 
theoretical developments and benchmarking of the method has been performed, followed by 
industrial examples such as the dendritic growth, grain structure formation in continuous casting of 
steel and turbulence modelling with solidification. The results of the new approach are compared 
with the analytical solutions, recent well documented bench-mark solutions, and commercial 
packages. The method turns out to be extremely simple to code, accurate, inclusion of the 
complicated physics can easily be looked over. The coding in 2D or 3D is almost identical. 

Key Words: Thermal Problems, Multiphysics and Multiscale Modelling, Meshless Methods. 

1. INTRODUCTION 

The most popular discrete approximate methods, such as for example the finite element method, are 
nowadays based on some sort of polygonization of the computational domain. Despite the powerful 
features of these methods, there are often substantial difficulties in applying them to realistic, 
geometrically complex three-dimensional transient problems. The meshing is often the most time 
consuming part of the solution process and is far from being fully automated. This is even more 
pronounced in solving thermal problems with phase changes, where in the front tracking approach, 
the polygons need to fit to the moving boundary, and in the one-domain approach, the polygons 
have to be refined in the vicinity of the moving boundary jumps and/or gradients. Regular mesh 
structure on the other hand introduces anisotropy in discretization and is not suitable for simulation 
of microstructures such as dendrites. In the last decade, there is a strong development of the 
meshless methods which rely on discretization by nodes without polygons between them. The 
present paper describes one of the most simple, versatile and efficient among them [1], based on the 
collocation with radial basis functions. The first developments of the described method started in 
2006 and the method has been up to now applied to most complicated benchmark tests and 
industrial applications. It is out of the scope of this extended abstract to describe all of them. 

mailto:bozidar.sarler@ung.si
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2. FORMULATION 

The basis of the method, applicable in macroscopic multi-physics simulations as well as in the 
microscopic phase-field method, can be described as follows. The suitable model equation for this 
purpose is the general transport equation, defined on a fixed domain   with boundary   

       S
t
 


      


v D  (1) 

with , , , , ,t  v D  and S  standing for density, transport variable, time, velocity, diffusion matrix 
and source, respectively. The solution of the governing equation for the transport variable at the 
final time 0t t   is sought, where 0t represents the initial time and t  the positive time increment. 

The initial value of the transport variable  ,t p  at a point with position vector p  and time 0t  is 
defined through the known function 0 . The boundary   is divided into not necessarily connected 

parts D N R      with Dirichlet, Neumann and Robin type boundary conditions, 
respectively. At the boundary point p  with normal n  and time 0 0t t t t    , these boundary 

conditions are defined through known functions D
 , N

 , R
 , R

ref . The representation of 

function over a set l  of (in general) non-equally spaced l N  nodes ; 1,2,...,l n ln Np  is made in 

the following way    1
l K

l k l kk
 


 p p , where l k  stands for the shape functions, l k  for 

the coefficients of the shape functions, and l K  represents the number of the shape functions. The 
left lower index on entries of summation expression represents the sub-domain l  on which the 
coefficients l k  are determined. The sub-domains l  are overlapping. Each of the sub-domains 

l  includes l N  grid-points of which l N  are in the domain and l N  are on the boundary. The 
coefficients can be calculated from the sub-domain nodes in two distinct ways. The first way is 
collocation (interpolation) and the second way is approximation by the least squares method. Only 
the simpler collocation version for calculation of the coefficients is explicitly considered in this 
extended abstract. Let us assume the known function values l n  in the nodes l np  of sub-domain 

l . The collocation implies    
1

l K

l k l n l k l n
k

 


  p p . For the coefficients to be computable by 

collocation, the number of the shape functions has to match the number of the grid-points, and the 

collocation matrix has to be non-singular    
1

;
l K

l k l n l k l n l l
k

K N 


   p p . This system of 

equations can be written in a matrix-vector form and the coefficients l α  can be computed by 

inverting it l l lψ α Φ ;  l kn l k l n  p ,  l n l n  p , 1
l l l

α ψ Φ . By taking into account 

the expressions for the calculation of the coefficients l α , the collocation representation of function 

  p  and the first derivatives can be expressed as (in Cartesian system) 

    
1 1

l lK N
-1

l k l kn l n
k n

ψ
 

   p p ,.    
1 1

; , ,
l lK N

-1
k l kn l n

k n

ψ x y z
p p 

 
 

 
   

 
 p p  (2) 

The required second derivatives are calculated principally the same as the first ones. The radial 

basis functions, such as multi-quadrics      
1/ 22

k k k c       p p p p p  can be used for the 
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shape function, where c  represents the shape parameter, determined to match a suitable condition 
number of the collocation matrix. The equation (1) can be transformed into following expression, 
by considering the explicit discretization, from which the unknown function values are calculated 

            0 0 0 0 0 0 0 0/ / / /t t t S                 v D  (3) 

3. SPECTRA OF APPLICATIONS 

     

FIGURE 1. Left: h-node refinement settings [1]. Centre: r-node refinement [11]. Right: non-uniform 
node distribution - industrial example [10]. 

 

FIGURE 2. Left: Macrosegregation test simulation [6]. Center: industrial continuous casting 
simulation [10]. Right: dendritic growth simulation by the point automata method [12]. 

The method has been first successfully applied to diffusion problems [2], convection-diffusion 
problems [3], the classical De Vahl Davis problem [4], melting of pure substance [5], solidification 
of binary alloy [6], turbulent flow [7,8]. Industrial applications on the macro-scale include solution 
of the thermal model of the direct chill casting of aluminium alloys [9] and continuous casting of 
steel [10] on moving (growing) computational domains. The convection dominated situations 
involve a special adaptive upwind strategy. The method has been on the micro level applied for 
solving dissolution of primary particles in aluminium alloys [11] and dendritic growth in Fe-C steel 
[12]. A multi-scale grain growth model for describing grain structure in steel billets is given in [13]. 
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4. CONCLUSIONS 

This paper shows basic elements and reviews applicability of the entirely new generation of 
numerical methods for solving thermo-fluid problems on multiple scales. The numerical tests, 
performed until now in the cited references, show much higher accuracy of the method as compared 
with the classical approaches. The method can cope with very large problems, since the 
computational effort grows approximately linear with the number of the nodes. The method appears 
efficient, because it does not require a solution of large systems of equations. Instead, small systems 
of linear equations have to be solved in each time-step for each node and associated sub-domain, 
probably representing the most natural and automatic domain decomposition. Respectively, the 
method is straightforwardly suitable for parallelization. Different types of refinements can be easily 
implemented. Complicate physics can be coped with in a transparent way. 
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ABSTRACT 

A boundary condition-enforced immersed boundary method is presented in this work for simulation 
of heat and mass transfer problems. The heat source/sink is introduced into the energy equation to 
model the effect of immersed boundary. Different from the previous works, in this work, the heat 
source/sink is not pre-calculated. Instead, it is determined implicitly in such a way that the 
temperature at the immersed boundary interpolated from the corrected temperature field accurately 
satisfies the boundary condition. In addition, the work proposes two simple and efficient ways to 
compute the average Nusselt number. Numerical experiments for both forced convection and 
natural convection problems are conducted to demonstrate the capability and efficiency of present 
method, and proposed two ways to calculate the average Nusselt number. 

Key Words: heat transfer, immersed boundary method, Nusselt number 

1. INTRODUCTION 

The immersed boundary method (IBM) [1] has been proven to be an effective technique for the 
study of flow characteristics with complex geometries. It models the effect of the immersed 
boundary to the surrounding fluid through the introduction of forcing terms in the momentum 
equations. In this regard, IBM has a difficulty to be directly applied to heat transfer problems since 
they also involve the energy equation. Currently, very few work is available in the literature to 
apply IBM for thermal flow problems. Among available works in the literature, a heat source term 
is usually introduced in the energy equation to consider the effect of the immersed boundary. 
However, like the conventional IBM, the heat source term is computed explicitly and is 
pre-calculated, and there is no mechanism to enforce the boundary condition for temperature. 
Consequently, the boundary condition for temperature is not accurately satisfied. In this work, we 
target on this issue and present an improved IBM for simulation of thermal flow problems. The 
central idea is that the heat source/sink is not calculated in advance, but considered as unknown and 
determined implicitly in such a way that the temperature at the boundary interpolated from the 
corrected temperature field is just the given value (boundary condition for temperature is enforced). 
For the thermal flow problem, accurate and effective calculation of average Nusselt number is a 
critical issue. This paper also presents two simple and efficient ways to compute the mean Nusselt 
number directly from the temperature correction at Eulerian points and heat flux at Lagrangian 
points.  

2. BOUNDARY CONDITION-ENFORCED IMMERSED BOUNDARY METHOD FOR 
THERMAL FLOW PROBLEMS 

In the application of IBM, two sets of points are used. One is called Eulerian point where the 
governing equations of heat and flow are solved. The other is termed as Lagrangian point which is 
used to model the immersed boundary. Note that the physical boundary condition is applied at the 
Lagrangian point. 
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The boundary condition-enforced immersed boundary method was first proposed by Shu et al [2], 
Wu and Shu [3] for simulation of isothermal flow problems. This technique can still be used to 
solve continuity and momentum equations in the thermal flow problems. In addition, we need to 
extend this technique for the solution of energy equation. Following the work of [2-3], the solution 
of energy equation by boundary condition-enforced IBM can be obtained by the following 
Predictor-Corrector steps,  

Predictor Step: TkT
t
Tcp

2))(( 


 u  (1) 

Corrector Step: q
t
Tcp 



   (2) 

Here, u  and T  denote velocity vector and temperature.  , k  and pc  are the fluid density, 

thermal diffusivity at reference temperature 
TT , and specific heat at constant pressure, 

respectively. q  is the heat source/sink transferred to the fluid from the heat flux )),(( tsQ X  at 
the immersed boundary, which can be expressed as 

  


 dststsQtq )),(()),((),( XxXx  (3) 

If we define the solution from Eq. (1) as intermediate temperature ),(* tT x  and solution from 
Eq.(2) as temperature correction ),( tT x , the corrected temperature field is 

 ),(),(),( * tTtTtT xxx   (4) 

Substituting Eq. (3) into Eq. (2) and writing the resultant equation in discrete form leads to  

 ),,2,1;,,2,1()(),(),( NjMisD
c

ttQtT
i

i
i
Bj

p

i
B

j   



 XxXx  (5) 

where i
BX  and jx  represent boundary (Lagrangian) points and fluid mesh (Eulerian) points 

respectively. is  is the arc length of boundary segment and )( i
BjD Xx   is the discrete delta 

function. Note that the unknowns in Eq. (5) are the boundary heat fluxes ),( tQ i
BX . To satisfy the 

physical boundary condition, we have to make sure that the temperature at the boundary point 
interpolated from the corrected temperature field by the delta function ijD  (abbreviation for 

)( i
BjD Xx  ) is equal to the specified temperature ),( tT i

BB X , that is, 

  
j

i
Bjj

i
BB hDtTtT    XxxX 2)(),(),(  (6) 

Substituting Eqs. (4) and (5) into Eq. (6) gives  

 

2

2               

*(X , ) (x , ) (x X )
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i i
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k
k iB
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j k p

T t T t D h

Q t t D s D h
c


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This is the equation system for boundary heat fluxes i
BQ . After i

BQ  at all Lagrangian points are 
obtained, they are substituted into Eq. (6) to obtain the temperature correction jT , which are 

further substituted into Eq. (4) to get the corrected temperature jT .  

3. EVALUATION OF AVERAGE NUSSELT NUMBER 

From the energy conservation law, two simple and efficient ways are presented to compute the 
mean Nusselt number from temperature correction at Eulerian points and boundary heat flux at 
Lagrangian points, which completely avoid evaluation of temperature gradients at the boundary 
points. These two methods are 

 Method 1: evaluation of mean Nusselt number from temperature correction at Eulerian 
points 

 ),,1(
)(

NjL
TTkL

yx
t

T
c

Nu c
w

j
jj

j
p








  







 (8) 

 Method 2: evaluation of mean Nusselt number from heat flux at Lagrangian points 

 ),,1(
)(

MiL
TTkL

sQ
Nu c

w

i
i

i
B








  



 (9) 

Here jx  and jy  are the Eulerian mesh size, cL  and L  are the reference length and the 
total length of the immersed boundary. N is the total number of Eulerian points while M is the total 
number of Lagrangian points. 

3. SOME NUMERICAL RESULTS 

The present method and proposed two ways to compute average Nusselt number are validated by 
their application to solve following two thermal flow problems.  

3.1 Forced Convection over A Stationary Isothermal Circular Cylinder 

 
FIGURE 1 Isotherms for flow over a heated stationary cylinder at 40Re,7.0Pr    
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 References  

Nu  Present Lange et al. [4] Soares et al. [5] Bharti et al. [6] 

Method 1 Method 2 

3.3519 3.3518 3.2805 3.2000 3.2825 

TABLE 1 Comparison of average Nusselt number  

The case of 40Re  , 7.0Pr   is simulated. Here the Reynolds number  /Re UD  is based 
on the free stream velocity U  and the cylinder diameter D , and Prandtl number is defined as 

kcp /Pr  . Fig. 1 shows isotherms in the vicinity of the cylinder. As can be seen, the 
temperature contours (isotherms) cluster heavily in the front surface of the cylinder, indicating a 
large temperature gradient there. The average Nusselt number on the cylinder surface is presented in 
Table 1. It is obvious that the average Nusselt numbers obtained by the two methods are almost the 
same and basically agree well with reference data in the literature [4-6]. 

3.2 Natural Convection in A Concentric Annulus Between A Square Outer Cylinder and A Circular 
Inner Cylinder 

To further test the capability of proposed method, the natural convection in a concentric annulus 
between a square outer cylinder (with length L ) and a heated circular inner cylinder (with radius 
r ), in which the velocity and temperature fields are strongly coupled, is simulated. The case of 

7.0Pr  , 5.2)2/( rL  and 510Ra  (based on length of square outer cylinder L ) is studied, 
and the numerical results are shown in Fig. 2. It is observed clearly from Fig. 2 that the flow and 
thermal fields are symmetric about the vertical central line through the center of the annulus and a 
plume appears on top of the inner cylinder. Table 2 shows the average Nusselt numbers calculated 
by the two methods and their comparison with reference data [7-8] in the literature. Clearly, the 
present results agree very well with the reference data. 

    

FIGURE 2 Streamlines (left) and isotherms (right) for 5101,25.0)2/(,7.0Pr  RarL  
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Case  Source  

Ra  )2/( rL  Present  Shu and 
Zhu [8] 

Moukalled and 
Acharya [7] 

Method 2 Method 3 

 2.5 4.836 4.836 4.86 5.08 

TABLE 2 Comparison of computed average Nusselt number 

4. CONCLUSIONS 

A boundary condition-enforced immersed boundary method is developed for simulation of heat and 
mass transfer problems. The heat source/sink incorporated into the energy equation to model the 
heated immersed boundary is evaluated implicitly by enforcing the isothermal boundary condition. 
In the meantime, two simple ways for computing average Nusselt number is proposed. Two 
numerical examples, including both forced convection and natural convection problems, are chosen 
to validate the proposed method. Numerical results demonstrate that the present boundary 
condition-enforced IBM can well solve thermal flow problems. 
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ABSTRACT 

A two-dimensional two-phase mass transport model for a liquid-feed DMFC is presented. The two-
phase mass transport in the anode and cathode porous regions is formulated based on the classical 
multiphase flow in porous media without invoking the assumption of constant gas pressure in the 
unsaturated porous medium flow theory. The two-phase flow behavior in the anode flow channel is 
modeled by utilizing the drift-flux model, while in the cathode flow channel the homogeneous mist-
flow model is used. In addition, a micro-agglomerate model is developed for the cathode catalyst 
layer. The model also accounts for the effects of both methanol and water crossover through the 
membrane. The integrated model formed by integrating the models in the different regions is solved 
numerically using a home-written computer code and validated against the experimental data in the 
literature. The model can be used to investigate the effects of various operating and structural 
parameters, such as methanol concentration, anode flow rate, porosities of both anode and cathode 
electrodes, the rate of methanol crossover, and the agglomerate size, on cell performance. 

Key Words: Direct methanol fuel cell, two-phase, mass transport  

1. INTRODUCTION 

Because of its unique advantages, the direct methanol fuel cell (DMFC) has been identified as one 
of the most promising power sources for portable and mobile applications. Although promising, this 
technology is facing some challenging technical issues. For given electrolyte and electrode 
materials, the performance and operating stability of a DMFC are determined by the mass transport 
of different species in the cell. As such, more and more attentions are turned to the management of 
the supply/removal of the reactants /products inside the DMFC, i.e. the mass transport related issues. 
Understanding of mass transport behaviors in DMFCs is thus essential. However, the opaque 
materials that form the constituent components of the fuel cell prevent experimental access for 
revealing the real-world details of how different species are transported and distributed inside the 
cell. Mathematical modeling, therefore, plays an important role in elucidating the complicated 
transport mechanism and limitations in DMFCs. 

To date, many DMFC models have been developed, most are based on single-phase approach. 
Although useful, the single-phase approach is incompetent to reveal the real-world details of 
transport behaviours in DMFC because of the bold assumption involved. It is necessary to develop 
two-phase mass transport model for DMFC. Although realistic, developing a sound two-phase 
DMFC model is challenging. During the past few years, great efforts have been made to develop 
two-phase DMFC models. The two-phase mass transport phenomena in a DMFC were often 
modelled by a so-called multiphase mixture model [1]. This model was obtained by reformulating 
the classical multi-phase theory with introducing multiphase mixture properties, among which, a 
mixture pressure of liquid and gas in a the porous medium has to be boldly defined. More 
importantly, the liquid and gas are usually assumed to be in thermodynamic equilibrium by the 
multiphase mixture model, which thus ignores the interfacial mass exchange at phase interface.   
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Clearly, there is a need to develop a sound DMFC model that can realistically simulates the liquid-
gas two-phase flow and mass transport phenomena in a DMFC. In this work, we developed an 
isothermal two-phase mass transport model for a liquid-feed DMFC. As compared with 
conventional models, the present two-phase mass transport model in the anode and cathode porous 
regions eliminates (a) the assumption of constant gas pressure in the unsaturated porous-medium 
flow theory; (b) the definition of the liquid-gas mixture pressure in the multiphase mixture model; 
and (c) the assumption of thermodynamic equilibrium condition between phases in the multiphase 
mixture model. Besides, sub-models were also developed for other regions. Each describes the 
specific mass transport processes that occur in the corresponding region.  

2. MODEL FORMULATION 

Consider a DMFC, as illustrated in Fig. 1, which consists of anode channel, anode diffusion layer 
(ADL), anode catalyst layer (ACL), membrane (MEM), cathode catalyst layer (CCL), cathode 
diffusion layer (CDL) and cathode channel. For convenience of description, the domain shown in 
Fig. 1 is divided into the cathode porous region (CDL and CCL), anode porous region (ADL and 
ACL), polymer electrolyte membrane, cathode channel and anode channel. To save space, in the 
following, we only present the models for anode and cathode porous regions.  

Fuel

Oxidant

 

FIGURE 1.  Schematic of a liquid-feed DMFC and the coordinate system 

2.1 Model for two-phase mass transport in the anode porous region 
On the DMFC anode, methanol is supplied in the anode flow channel, transfers through the ADL to 
the ACL, where part of methanol is electro-chemically oxidized to form gas carbon dioxide and 
current, while the remainder of methanol permeates the membrane to the cathode. The produced 
carbon dioxide transfers back to the anode flow channel, and is finally removed by the methanol 
solution stream. In the anode porous region, we are interested in four major variables, including 
liquid methanol concentration (CM,l), liquid pressure (pl), gas-void fraction (1−s1) and methanol 
vapor concentration (CMV,g). The governing equations corresponding to each of these variables 
can be given by: 
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The interfacial transfer rate of methanol between the liquid and gas in the anode porous region is 
given by: 
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Eqs. (1) to (5) form the model for the two-phase mass transport in the anode porous region. Note 
that the interfacial exchange of methanol between phases is considered, opposing to the assumption 
of thermodynamic equilibrium between phases employed in other DMFC models [1-2]. 

2.2 Model for two-phase mass transport in the cathode porous region 
On the DMFC cathode, oxygen in the flow channel transfers through the CDL to the CCL, where 
the oxygen reduction reaction (ORR) takes place to form water. The produced water, along with the 
water permeated from the anode, flows back through the cathode porous region to the cathode 
channel. This two-phase mass transport in the cathode porous region is related to four major 
variables: oxygen concentration (CO2,g), gas pressure (pg), liquid saturation (sl) and water vapor 
concentration (Cwv,g). The governing equations corresponding to the four variables are: 
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To account for the effect of water evaporation and condensation, the interfacial transfer rate of 
water between the liquid and gas phase is given by: 
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Note that the interfacial transfer of water between the phases is embodied in the source terms on the 
right-hand sides of Eqs. (7-9).  
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Eqs. (6) to (10) form the model for simulating the two-phase mass transport in the cathode porous 
region. It is noticed that unlike the unsaturated porous-medium flow theory, the present model 
eliminates the assumption of constant gas pressure assumption. As implied by Eq. (8), the constant 
gas pressure assumption in the unsaturated porous medium flow model will exclude the liquid flux 
caused by the gas phase motion that counters the capillarity-induced liquid phase motion. Moreover, 
the assumption of constant gas pressure will cause the corresponding convective transfer of gas 
species to be neglected. Another feature of the present model is that there is no need to introduce a 
so-called liquid-gas mixture pressure as defined in the multiphase mixture model. More importantly, 
the present model considers the interface mass exchange between liquid and gas, eliminating the 
assumption of thermodynamic equilibrium between phases in the multiphase mixture model.  

Besides, specific sub-models were also constructed to simulate the specific mass transport processes 
occurred in other regions. Those include the drift-flux model for simulating the two-phase flow in 
the anode channel, the homogenous model for cathode flow channel, the microscopic agglomerate 
model for the CCL, and the model for simulating the transport of dissolved species through the 
membrane. The present model was formed by integrating those sub-models for different regions. 
The information on the two-phase mass transport in a DMFC can be obtained by solving the 
governing equations with corresponding boundary conditions, specific physicochemical properties 
and the information of the electrochemical kinetics.  

3. RESULTS 

To validate the model, we compare the numerical results predicted by the present model with the 
data reported in the open literature.  Figure 2 compares the global cell performance for 0.25 M, 0.5 
M, 1 M and 2 M methanol solutions that predicted by the present model with the data 
experimentally measured [3]. Those experimental data were collected at 75 ºC with air fed to the 
cathode at an extremely high flow rate of 1000 ml min-1 to avoid the effects of the oxygen 
depletion and the presence of liquid water along the channel. It is seen that the predicted 
polarization curves are in reasonable agreement with the experimental data. As can be seen, in the 
low current density region the cell voltage decreases with methanol concentration due to the 
increased mixed potential as a result of the increased rate of methanol crossover. The numerical 
results also reveal that the limiting current density increases with methanol concentration for the 
cases when methanol concentration is lower than 1 M, proving that the limiting current density is 
caused by the methanol transport limitation. However, for the case when methanol concentration 
increases to 2 M, the cell voltage decreases almost linearly with current density toward zero with no 
mass transport limitation. All these polarization behaviors are consistent with those revealed by 
experiments [3].  
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FIGURE 2. Cell performance predicted by the present model and experimental data [3]  
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Figure 3 shows the rate of methanol crossover as a function of current density for various methanol 
concentrations ranging from 0.25 M to 3 M. For the cases when methanol concentration is lower 
than 2 M, the rate of methanol crossover decreases with current density and becomes zero when 
reaching limiting current density, at which the mole flow rate of methanol equals the rate of the 
MOR in the anode catalyst layer. However, the rate of methanol crossover at 3 M shows a different 
behaviour: it increases slightly with current density, reaches a maximum, and decreases afterward.  
Generally speaking, the trend in methanol crossover as function of current density is similar to those 
measured [4] or calculated [5].  
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FIGURE 3. Effect of methanol concentration on methanol crossover 

4. CONCLUSIONS 

Mathematical modeling is essential to shed light on the mass transport processes in the DMFC. This 
work describes the development and validation of a two-phase mass transport model for liquid-feed 
DMFCs. As compared with conventional models, the present two-phase mass transport model in the 
porous structures eliminates the following assumptions: (a) the assumption of constant gas pressure 
in the unsaturated porous medium flow theory; (b) the definition of the liquid-gas mixture pressure 
in the multiphase mixture model; and (c) the assumption of thermodynamic equilibrium condition 
between phases in the multiphase mixture model. In addition, the drift-flux and homogeneous 
theories were employed to simulate, respectively, the flow in the anode and cathode channels. 
Moreover, a microscopic agglomerate model was developed to describe the effect of microstructure 
of the catalyst layer. Finally, this integrated model is solved numerically using a home-written 
computer code and validated against the data reported in the open literature. It is indicated that the 
present model can predict the cell performance with fairly good accuracy.  
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ABSTRACT 

The mechanism of the radiative heat transfer in micro/nano scale structures is different from that of 
the traditional one, and the ―near-field effects‖ are needed to be considered. Several examples of 
calculation model are introduced here to describe the radiative properties of the structured surface 
with the characteristic length smaller than the incident wavelength. 

Key Words: Micro/Nano structure, FDTD, Near-field radiative theory. 

1. INTRODUCTION 

As a basic way of energy transfer, thermal radiation exists commonly in nature. In the area of 
engineering technology such as the energy, power, aerospace, optoelectronics, military technology, 
optical technology, mechanical and electrical systems, the thermal radiation plays an important role. 
Since the 1920s, research of the basic theory and application of thermal radiation has been made 
considerable progress, and has become very active in the field of thermal science. 

The process of radiation heat transfer is generally divided into emission, absorption, scattering and 
transmission. When the characteristic length of the object involved in the thermal radiation heat 
transfer is much larger than the wavelength of thermal radiation, the radiant energy transfer process 
can be simulated using the methods of ray-tracing or geometrical optics approximately. These 
problems are named as "far-field radiative heat transfer problem". When the characteristic length of 
the object is close to or smaller than the wavelength, the wave characteristics ignored in traditional 
radiation heat transfer equation stand out, and the effect of the surface properties of the object on 
radiation heat transfer process is more obvious, i.e., the "near field" significantly affects the whole 
process of energy radiation. Such problems are called as "near-field radiative heat transfer 
problem." 

Microscale radiation effects don’t only show on micro-structured surface, when the distance 
between two objects is close to or smaller than the wavelengths of radiation, the radiation transfer 
process between the objects also shows strong microscale effect. For the enhanced near-field 
radiation effects, the traditional theory of radiation heat transfer could not be analyzed and resolved. 

In this paper, based on the FDTD method and near-field radiative theory, several examples of 
calculation model are introduced to describe the radiative properties of the micro/nano structured 
surface. In addition, near-field radiative theory is used to study the mechanism of near field effect 
between magnetic and non-magnetic materials. 

2. FDTD METHOD AND NEAR-FIELD RADIATIVE THEORY 

FDTD method is a direct time-domain method for solving Maxwell differential equations. The basic 
idea of FDTD method is: Using the Yee cell as discrete units, the Maxwell's equations are 
converted to a set of central difference equations to solve in each Yee unit cell. Based on the results 
of the solution of Maxwell's equations, it is needed to analysis the energy penetrating into the 
system in a certain time, and its reflection, transmission and absorption in different directions, then 
to obtain the spectral properties of the thermal radiation.  
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The near-field radiative theory is a direct method to deal the radiative heat transfer in microscale, in 
which the magnitude of the heat flux is directly achieved. It is mainly assumed that the thermal 
radiation is due to the fluctuating electromagnetic field result from the fluctuating electric and 
magnetic current sources in the medium. By combination of the stochastic Maxwell’s equations and 
the correlation functions between these sources given by fluctuation-dissipation theorem (FDT), the 
heat flux described by the time-averaged Poynting vector is achieved. 

3. EXAMPLES 

3.1 Structure color of tropical Morpho butterflies 

Structure color of tropical Morpho butterflies is one of very hot topics. It is commonly accepted that 
their brilliant and iridescent color is principally due to optical interference. The calculation models 
based on morpho’s microstructure is presented here, and characteristics of structure color from such 
ridge microstructures were simulated by using the FDTD method in order to explore the color 
mechanism of the butterfly. Explorations were offered to explain structure color of Morpho 
butterflies according to our simulations．Our analysis meets with other’s experiment results very 
well, and which shows our method is very feasible to investigate the structure color of morpho 
butterflies. 

3.2 One-dimensional Si/SiO2 photonic crystals for thermophotovoltaic filter 

The one-dimensional PC filter for the spectral control of photons in order to maximize the 
conversion efficiency and power density of a TPV system is proposed (as shown in Fig 1) [1]. The 
filter structure has been designed as 4 periods and 8 layers (4 pairs) by using SiO2 and Si material 
pair, and the thicknesses of SiO2 and Si layer have been determined to be equal to 0.204 and 0.194 
μm in the first period and 0.408 and 0.176 μm in the other three periods. The physical vapor 
deposition (PVD) process has successfully been used to fabricate the filter. The normal 
transmittance performance of the filter has been measured with two spectrophotometers within the 
spectral range from 0.7 to 3.3 μm. It shows that the reflectivity of the filter is over 92% in the 
wavelength range 1.8—3.3 μm and the averaged transmissivity reaches 90% in the wavelength 
range 0.9—1.8 μm. The theoretical prediction has also given the identical results. The estimated 
spectral efficiency of the TPV increases with the emitter temperature. For example, the spectral 
efficiency of the TPV system with such a filter reaches 53%. The temperature-withstanding 
experiment has indicated that the fabricated 8-layer matching one-dimensional Si/SiO2 PC filter can 
normally work at the temperature environment below 600. 

                       
FIGURE 1.  Sample of PC Si/SiO2                 FIGURE 2. Absorptance of the assembly grating structure  

           compared with the monotone structure surfaces 

3.3 Absorption enhancement of solar cells with an assembly grating structure 
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Figure 2 illustrates the spectral absorptance of the assembly structure of the gratings. For the 
purpose of comparison, the surface absorptance of three conventional monotone grating structures 
is included. It is clear that the absorptance spectrum of the assembly grating structure is much 
higher than those of the three conventional ones, especially in the visible spectrum. It is found that 
the absorptance of the assembly structure surface is greater than 0.85 throughout the wave-band, 
which is also higher than those of the nanostructured surface [2]. Such an absorption property of the 
assembly structure is beneficial for improving the conversion efficiency of solar cells. 

3.4 Spectral properties of multilayer hole arrays 

The spectral properties of the symmetric metal-insulator-metal hole arrays consisting of an air or 
MgF2 core layer sandwiched between two silver layers with rectangular hole arrays have been 
investigated using FDTD Sin-Cos method. Numerical investigation has revealed that the structural 
parameters and the physical parameters of the dielectric core layer affect the optical properties of 
the structure. The absorption and EOT peaks in absorptance and transmittance spectra are mainly 
attributed to the internal- and external-SPPs excited in metal-dielectric multilayer system. 
Compared with other SPPs modes, the external-SPPs (1, 0) mode has a greater contribution to the 
strong absorption and EOT phenomena. From the spectra maps, an important feature can be found 
that the absorptance can reach more than 90% if the internal- and external-SPPs are simultaneously 
excited. By selecting the suitable structural parameters, the metal-insulator-metal film hole arrays 
structure can reach a higher EOT peak than single metallic 2DHAs. Therefore, these features can be 
applied to design the novel optical-electronic devices. 

3.5 Spectral properties of 2D Ag micro-cavity arrays and the application in narrow-band emitter 

To investigate spectral properties of structured silver surface with periodic rectangular hollow 
cavities, numerical computation is conducted to obtain spectral distribution of surface absorptance 
with different structural parameters using the finite-difference time-domain (FDTD) method [3]. By 
means of numerical examples, the effects of structural parameters, incident angle and azimuthal 
angle on the spectral features of the structured surface are discussed. It is found that the structured 
surface shows the characteristics of the peak absorption in the vicinity of resonant wavelength of 
rectangular cavity. For some special structure parameters, the peak absorptance of the incident 
plane wave can reach as high as above 80% due to the excitation of microcavity effect. The optimal 
narrow-band absorption can be achieved by the rational design of the structural parameters of 
rectangular cavity. The directional dependence of spectral absorptance is also analyzed and the 
results reveal that the absorption peak positions are incident-angle-independent. The results show 
that the microscaled rectangular cavities fabricated on the low-emissivity silver surface are very 
efficient for selective improvement of the radiative features, which provides guidance for the design 
of narrow-band infrared thermal emitters.  

3.6 The near field radiative heat transfer between magnetic and non-magnetic materials 

So far, most investigations of near field radiative heat transfer were restricted to the assumption of 
nonmagnetic substances. From these researches, it was clear that excitation of surface waves in TM 
polarization would enhance the near-field radiative heat transfer and made it monochromatic [4]. 
With the development of the metamaterials, the surface waves in TE polarization might be excited. 
In order to discuss the effect of the excitation of surface waves in TE polarization on the near-field 
radiative heat transfer, we developed the theory of near-field radiative heat transfer to deal with 
near-field radiative heat transfer for layered magnetic media (involving metamaterials). According 
to the theory, we calculated the near-field radiative heat transfer between two semi-infinite bodies 
(made by identical nonmagnetic/magnetic materials) separated by different vacuum gap, as shown 
in Fig. 3. It should be pointed that except the relative permeability is 1, the other conditions is same 
as that for magnetic materials.  
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FIGURE 3. Spectral rediative energy flux between magnetic and non-magnetic materials 

As shown in Fig. 8, the different behaviours for the radiative heat transfer were observed for 
magnetic and nonmagnetic materials. Although there exists a peak 137.0705 10  rad/s    for both 
magnetic and non-magnetic media due to the effect excitation of surface waves in TM polarization, 
there is an additional peak around 134.7134 10  rad/s    due to the effect of excitation of surface 
waves in TE polarization for the magnetic media as the dispersion relation for surface polaritons in 
TE polarization could be satisfied, which will further enhance the heat transfer between the two 
bodies. By comparison of the contributions of TE and TM waves to the heat flux, it might be found 
that the main difference between the magnetic and nonmagnetic materials is that the surface wave 
would be excited in TE polarization, resulting the enhancement of the contributions of TE waves to 
the heat flux and little effect on the contributions of TM waves to it. 

4. CONCLUSIONS 

In this paper, the near-field effects in radiation are considered adequately by solving Maxwell 
equations directly. The results show great influence of the near-field effects on heat radiation of the 
micro/nano-structured surface. By adjusting micro/nano-scale structure, the radiative heat transfer 
can be greatly enhanced or suppressed. Therefore, the mechanism of the radiative heat transfer in 
micro/nano scale structures can provide a good guidance in the control of heat radiation. 
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ABSTRACT 

We report a novel method to derive surface models of different orders, which account for the 
couplings among thermal, elastic and electric fields. The derivation is based on the state-space 
formalism, during which an operational interpretation of related partial differential operators is 
needed. For the degenerated case of a plane surface boundary of an elastic body, the results are 
identical to the well-known surface model proposed by Gurtin and Murdoch when the residual 
surface stresses are absent. Numerical results are given to show the surface effect on the 
propagation characteristics of the Bleustein-Gulyaev waves in a surface electroded piezoelectric 
half-space. 

Key Words: Surface Theory, Multi-field Coupling, State-space Formalism. 

1. INTRODUCTION 

There is an increasing academic interest in the mechanical behavior of bodies of small size because 
some size-dependent phenomena have been observed experimentally or through molecular 
dynamics simulation [1,2]. Continuum mechanics has demonstrated very powerful to explain these 
particular phenomena in a relatively simple theoretical framework by accounting for the so-called 
surface effects. There are two main ways to establish the continuum surface theories. One is to treat 
the surface of a body as a material surface of zero thickness and extend the conventional continuum 
mechanics concepts. This is accomplished by Gurtin and Murdoch [3] for an arbitrary deformable 
curved surface. The other assumes a surface layer of a small thickness, which has material 
properties different from the bulk. This is initially suggested by Mindlin [4] and later explored by 
Tiersten [5] in the wave propagation analysis. Recently, it has become a main stream to study the 
surface effects in solids by employing the Gurtin-Murdoch theory [6,7]. However, the Mindlin-
Tiersten approach has also been followed by several authors in the wave propagation analyses [8,9].  

In this paper, we will follow the Mindlin-Tiersten treatment, but adopt a new method to develop the 
surface models of bodies in which there are interactions among elastic, electric and thermal fields. 
This is an extension of our previous short paper which studies the surface effect on surface shear 
waves in a horizontally polarized piezoelectric half-space [10]. 

2. STATE EQUATION 

Only linear problems are of interest here. It has been shown recently that the state-space 
formulation can play a very effective and important role in the study of laminated structures [11]. 
For a deformable body with couplings among thermal, elastic and electric fields, Tarn [12] derived 
the following state equation: 

 
1 1 2

11 22 22 2
2T T

2 22 21 11 1 1

T
x t 

          
          

         

0u uD C C β
K uτ τD D L β

, (1) 
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where T
1 2 3[ , , , ]u u u u  and T

2 12 22 23 2[ , , , ]D  τ  are the generalized displacement vector and 
generalized stress vector; ijD  and 1L  are operator matrices, containing derivatives with respect to 

1x  and 3x ; and other symbols in Eq. (1) are well defined in Ref. [12] and are omitted here. 

3. NEW METHOD TO ESTABLISH SURFACE MODELS 

We first rewrite Eq. (1) in the form of 2/ x T   V MV g , here T T T
2[ , ]V u τ  is the state vector; 

M  is an operator matrix, which further includes the time derivatives; and g  is an operator vector. 
Then, by treating the differential operators as parameters [13], we may obtain the following solution: 

 2

2 2 20
( ) exp( ) (0) exp[ ( )] d

x
x x T x t t  V M V M g , (2) 

Now we confine ourselves to a plane surface, which is seen as a thin layer with different material 
properties from the bulk. The coordinates are set up as shown in Fig. 1. 

 
FIGURE 1. The surface layer model. 

Setting 2x h   in Eq. (2) leads to 

 
0

( ) exp( ) (0) exp[ ( )] d
h

h h T h t t


     V M V M g , (3) 

The exponential matrix can be expressed in a series as follows 

 2 2 11 ( 1)exp( ) ( )
2 !

n
n n nh h h h O h

n


      M I M M M . (4) 

Since the thickness h  is small, we can truncate the above series to any order, depending on the 
accuracy requirement of the problem. If we retrain only the first two terms in Eq. (4), we obtain 
from Eq. (3) 

 
0

( ) ( ) (0) [ ( )] d
h

h h T h t t


     V I M V I M g , (5) 

Now making use of the continuity conditions at the interface 2 0x   between the surface layer and 
the bulk, as well as the boundary conditions at 2x h  , we can derive a set of differential relation 
between the state variables at 2 0x  . These are the equations governing the surface, and can be 
used to approximate the effect of the surface layer. We will give a simple description of such a 
procedure for a particular wave propagation problem in the next section. 

4. SURFACE EFFECT ON BG WAVE 

Recently, the propagation of Bleustein-Gulyaev (BG) type surface shear wave in a piezoelectric 
half-space with surface effect was considered [10], with the assumption that the surface of the half-
space is open-circuited. Here we consider another case, i.e. the surface of the half-space is covered 
with an electrode which is grounded. For the BG wave without thermal effect, we have T

3[ , ]u u  
and T

2 23 2[ , ]Dτ  , and 

x2 

 

x1 Bulk material 

Surface layer h 
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0 A
M A B

B 0
, g 0 . (6) 

Thus, we obtain from Eq. (5) the following first-order surface theory: 

 
2 2 2

15 3 344
23 2 23 44 152 2 2

1 1

(0) (0) (0)(0) (0) (0) 0, (0) 0
s s

s s s
s s

e u uc D c e
t x x


   

 

  
      

  
, (7) 

where the superscript s  denotes the surface parameters, and these can be found in Ref. [10]. We 
have made use of the continuity conditions at 2 0x   and the boundary conditions at 2x h  . It 
can be easily shown that the second in Eq. (7) is identical to the one derived by Gurtin and Murdoch 
in the pure elastic case. In view of Eq. (7), the characteristic equation for the BG wave can be 
derived as 

 

15 15 15 15 44 11
2 1

11

2 2 215 15
2 44 1 15 1 15 1

11

( )1
0

s s s
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

  

 



 


 

    
 

, (8) 

where 1k  is the wave number along the 1x  axis, and 2 2
2 1 / 0k k c   , with 2

44 15 11/c c e   . 
If the surface effect is absent, Eq. (8) becomes identical to that available in literature [14]. 

For numerical calculation, we consider a PZT-4 half-space, for which 44 25.6c  109N/m2, 

15 12.7e  C/m2, 11 646.4  10-11F/m, and 7500  kg/m3. To study the surface effect, we 
artificially assume a surface layer of thickness 2mm, which has material properties 44 1 44

sc r c , 

15 1 15
se r e , 11 1 11

s r  , and 2
s r  , with 1r  and 2r  being two scaling factors. Figure 2 depicts the 

phase velocity spectrum, where the dimensionless phase velocity V  and wave number   are 
defined respectively as 0/V v v  and 1k H  , with 0 44 /v c   and 1H  m. As we can see 
that, when there is no surface effect, the BG wave propagates at a constant velocity, and hence is 
non-dispersive. If the surface effect is involved, then the wave is slightly dispersive, and becomes 
slower when the wave number increases. In the calculation, we have taken 1 2r   and 2 20r  , 
which indicate a slow surface layer (i.e. 0v  in the layer is slower than that in the half-space). 
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FIGURE 2. Phase velocity versus wave number. 

Solid: without surface effect 
Dotted: with surface effect 
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5. CONCLUSIONS 

This paper outlines a new approach to derive the governing equations of continuum surface models 
which involve the couplings among thermal, elastic and electric fields. An example of wave 
propagation in a piezoelectric half-space with surface electroded is presented and the surface effect 
is illustrated. 
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ABSTRACT 

The thermal-controlled swelling process of a gel particle is of great importance for applications in 
drug delivery. In this work, we study a hybrid structure where a poly(N-isopropylacrylamide) gel 
particle is coated by an elastic membrane. Our results show that in such a hybrid gel particle, the 
thermal-controlled release and absorption process can be tuned by changing the elastic property of 
the elastic membrane.  

Key Words: PNIPAM Gel, Core-shell Structure, Thermal-induced Deformation. 

1. INTRODUCTION 

Poly(N-isopropylacrylamide) (PNIPAM) gels have been widely used in drug delivery due to their 
thermal-responsive swelling (or deswelling). In these applications, the controlling of the amount of 
solvent molecules that the PNIPAM gel releases (or absorbs) in response to temperature changes is 
of great importance, which motivates researchers to fabricate new species of PNIPAM gels with 
hybrid structures. This work studies a core-shell gel particle where a PNIPAM microgel is enclosed 
by an elastic membrane, and shows that the thermal-controlled release and absorption process in 
this hybrid gel particle can be tuned by changing the elastic property of the membrane. 

2. HYBRID GEL PARTICAL 

Figure 1 illustrates a hybrid gel particle, where a spherical core of PNIPAM gel is coated by a 
membrane of phospholipid bilayer. The structure can be prepared by polymerizing a solution of 
PNIPAM inside a phospholipid giant unilamellar vesicle. The phospholipid membrane, which is 
compliant and permeable to water, separates the PNIPAM core from the external pure water. The 
procedure of the preparation of this gel particle is conducted at a constant room temperature T0 , 
which is much lower than the volume transition temperature Ttr of the PNIPAM gel (Fig. 1a).  

 
FIGURE 1. A hybrid gel particle 

At the instant when the particle has been prepared, the phospholipid membrane is a shell of 
thickness δ; meanwhile, the core gel is a sphere with radius A and swells by an isotropic stretch 0 
relative to its dry network. We assume that the outer surface of the core gel is fully bounded with 
the inner surface of the membrane. We also assume that the membrane has no physical or chemical 
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interaction with the solvent and is un-sensitive to temperature but allows the solvent molecules to 
diffuse freely. 

Subsequently, the temperature is allowed to vary. When the temperature is elevated, the hybrid gel 
particle first shrinks remarkably and then keeps its volume constant at temperatures above the 
volume transition temperature of PNIPAM gels (Fig. 1b). The process is reversible. When the 
temperature is cooled back to room temperature again, the hybrid gel particle re-swells and recovers 
its initial shape. Interestingly, it is observed that during the volume transition, the phospholipid 
membrane is compliant and is strongly bonded to the PNIPAM core [1]. Compared with a stand-
alone PNIPAM microgel, the presence of this elastic membrane in this hybrid gel particle should 
affect the thermal-responsive behaviour of the PNIPAM core. Thus, an understanding of the effects 
of the elastic membrane is of great importance, especially when such hybrid gel particles are used in 
controlled release systems. However, few theoretical analyses exist to account for such effects. 

In this paper, we develop a theoretical model to show that the thermal-responsive behaviour of the 
hybrid gel particle can be altered by changing the material property of the membrane. Here the 
preparation state (Fig. 1a) is chosen as the reference state. With reference to Figs. 1a and b, an 
element of the gel particle, which is at distance R from the centre in the reference state, deforms to a 
position at distance r from the centre in the current state. For simplicity, the deformation of the 
hybrid particle is taken to retain spherical symmetry, so that the deformation of the structure can be 
fully specified by the function r(R). Science the membrane is fully bounded with the core gel, the 
expansion or the shrink of the core gel produces an internal stress distributed uniformly over the 
interface between the membrane and the core. This internal stress plays a similar rule as that of a 
hydrostatic stress, so that the deformation field, as well as the solvent concentration, in the core gel 
is homogeneous. Consequently, the deformation (and hence the solvent concentration) of the core 
gel is then fully determined by the inner radius of the membrane. For convenience, we introduce 
superscripts “m” and “c” to distinguish quantities associated with the membrane from those 
associated with the PNIPAM core. Denote the stretches of the membrane in the radial direction and 
in the circumferential direction as 

 m m m
r dr dR  , mm mr R  . (1) 

By definition, the deformation gradient of the membrane is 

 

m

m m

m

r











 
 

  
 
 

F . (2) 

Here we regard the phospholipid membrane as a layer of rubber-like elastomer, the free-energy 
density of which takes the classical neo-Hookean form [2] 

    m m m m1 Tr 3 logdet
2

W     
 

C C . (3) 

Here m  is the shear modulus of the membrane, “ Tr ” stands for trace, and m mT mC F F  is the 
right Cauchy-Green strain tensor, where mTF  is the transpose of the deformation gradient mF  
defined in (3). Define the nominal stress as the work conjugate to the deformation gradient, namely 

 m m m
r rs W    , m m m1

2s W    . (4) 

In equilibrium, the two nominal stresses m
rs  and ms  are required to satisfy the condition of 

mechanical equilibrium 
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m mm

m m2 0rr s sds
dR R


  . (5) 

A combination of the above equations yields the specialized mechanical equilibrium equation 

 
2 12 m m m m m m

m2 m m m m m m

21 0d r dr dr dr r R
dR dR R dR dR R r

       
           
         

. (6) 

This equation is a nonlinear second-order differential equation that governs the field of deformation 
in the membrane, rm(Rm). Denote the uniform internal stress acting on the interface by P . On the 
outer surface of the membrane, no mechanical constraint acts, so that the redial stress  m

rs A   
vanishes and (4) becomes 

 
m

1m m

m m 0
R A

dr dr
dR dR





 

  
   
   

. (7) 

On the inner surface of the membrane, the radial stress  m
rs A  equals the uniform stress P , so that 

(4) now gives 

 
m

1m m
m

m m

R A

dr dr P
dR dR







  
   
   

. (8) 

Now let us consider the PNIPAM core. Under the uniform stress P , the PNIPAM core establishes a 
homogeneous field of stress in equilibrium, c c

rs s P  , which in turn results in a homogenous field 
of stretch, denoted by h . This homogenous stretch h  is equal to the radio of the radius of the 
PNIPAM core in current state to that in the reference state,  c

h r A A  . Since the membrane and 
the core are fully boned at the interface, the radius of the PNIPAM core should equal the inner 
radius of the membrane,    c mr A r A , which gives 

  m
h r A A  . (9) 

The free-energy function of a uniformly deformed PNIPAM gel takes the form [3] 

  
c

c 2 2 2 2
h h3

0

3 3 logdet
2

W 
   


 

   
 

, (10) 

where c  is the shear modulus of the PNIPAM gel, 0  is the initial stretch of the PNIPAM gel in 
the reference state. The stretch   is temperature dependent and takes the form    0T T    . 

Here  T  is the stretch of a stress-free PNIPAM gel in a state at temperature T  relative to that in 
the state when the volume transition is completed. An empirical formula of  T  is 

  
 tr tr

tr

1 1 ,   for 
1,   for 

T T T T
T

T T





   

 


. (11) 

Here α=0.255 and β=1.968, which are obtained by fitting experimental data. Similar to (4), the 
homogenous stress inside the PNIPAM core is defined as c c

hs W P    . Using (10) we obtain 

    

   

m

3 m

2c

0

0
2

r A
rT

AT
P

A A




 
  

  
. (12) 

Eliminating  P  from (8) and (12) we finally find 



 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 

    

   
m

1 mm m
m

m m 3

2
0

2 m

c

0
R A

T
T

r Adr dr A
dR dR A r A












 


  
   
 

 
   

. (13) 

Equations (7) and (13) determine two boundary conditions for solving the differential equation (6). 
Once the function  m mr R  is solved, the degree of swelling  3

h  of the core gel can be determined 
by (9).  

 

FIGURE 2. Variation of the degree of swelling  3
h  with the temperature T  

3. RESULTS 

Figure 2 plots the variation of the degree of swelling  3
h   with the temperature T  at several values 

of the relative elastic modulus m c   . In plotting this figure, we have set c 4 210  N/m  , 

0 20 CT  , tr 32.5 CT   and 0 1.3  . As expected, the PNIPAM core shrinks substantially as the 
temperature rises during the volume transition (i.e., trT T ), but keeps its volume unchanged when 
the volume transition is complete (i.e., trT T ). This trend is in good consistency with experiment 
observation [1]. 

4. CONCLUSIONS 

In this work, a theoretical model was developed to account for the thermal-controlled swelling 
process in a hybrid particle based on PNIPAM gels. Our results show that the thermal-responsive 
behaviour of the hybrid gel particle can be tuned by changing the mechanical properties of the 
elastic membrane.  
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ABSTRACT 

To counter micro-structure materials has measurable relaxation time and obey C-V non-Fourier law 
of heat conduction, similarity criteria for one dimensional transient with thermo-mechanical 
interaction was discussed to provide basis for application of numerical calculation and model 
experiment result. 

Key Words: Similarity criterion, Thermo-mechanical interaction, Non-Fourier law. 

1. INTRODUCTION 

Laminated structures have been used in a large number of structures due to their excellent 
characteristics, such as heat shield plates and shells made of the laminates. For example, the face 
sheet are generally made up of the perfect heat resistance solid media, while the cores are 
lightweight materials,such as honeycombs materials, in order to increase stiffness and strength. 
There exist the wave propagation with thermo-mechanical interaction in laminated structure under 
the thermal and/or mechanical shock. For the design calculation, the one dimensional transient with 
thermo-mechanical interaction would be taken as a model to give the numerical results 
corresponding to the typical load. Becouse there is so important engineering background [1-3]. How 
to spread the achievements to applications would be a valuable works. To counter micro-structure 
materials that has measurable relaxation time and obey C-V non-Fourier law of heat conduction[4], 
similarity criteria for one dimensional transient with thermo-mechanical interaction was discussed 
to provide basis for application of numerical calculation and model experiment result. 

2. MAIN BODY 

Suppose media in each layer are continuum and transversely isotropic homogeneous materials. 
Taking 3ox axis along the thickness direction, and the coordinate plane 1 2x ox  is the transversely 
isotropic plane. Thus the constitutive equation and heat conductivity laws in each sheet are given as : 

11 1111 11 1122 22 1133 33 11a a a         ,   12 21 1212 122a                                       (1.1) 

22 1122 11 1111 22 1133 33 11a a a         ,   23 32 1313 232a                                       (1.2) 

33 1133 11 1133 22 3333 33 33a a a         ,   31 13 1313 132a                                       (1.3)  
( ) ( )
1 01 1 1 1 2 01 2 1 2 3 03 3 3 3, ,e eq t q k q t q k q t q k          ， ， ，                                         (2)  

Here, the partial derivative available are introduced, for example 2 2x   ， , 3 3q q t    and 
, , , ,ji ji j jq   ， are the stress, strain, temperature gradient, heat flux vector components and the 

temperature increase, respectively. The  is the increase of update temperature T  relative to the 
uniform reference temperature 0T , namely, 0 0T T    . 11 33,  are the temperature coefficient of 
the stress. 1111a , 1122a , 1133a , 3333a , 1212a , 1313a are the five independent components of elastic 
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constants, some of them satisfied with the following relationship 1111 1122 12122a a a  . There is 
measurable relaxation time in micro-structure materials that reach several seconds for some porous 
media. In accordance with this phenomenon the C-V type non-Fourier heat transfer law(2)has been 
introduced [4]. The equivalent quantities 01t  and 03t are relaxation times. If the equivalent relaxation 
times is equal to zero, 1k , 3k will become two independent Fourier coefficients. The eq. (1-2) have 
to be taken are the equivalent constitutive equation of the continuum model to descript the 
laminated structure with the core cellular materials. Here, 11 equivalent constants are involved. 
Different sub-layer has different ones. In condition of one dimensional deformation and heat 
conduction along the thickness direction, 

1 2 0q q  , 22 33 12 23 31 0         , hence, 

12 23 31 0     , equation (1, 2) can be simplified as the following:  

11 1133 33 11 22 1133 33 11 33 3333 33 33, ,a a a                                                        (3) 

3 03 3 3 3q t q k    ，                                                                            (4) 

Considering the geometric equations, momentum equations and thermal equilibrium equation[5]，
the partial differential equations can be given with the strain 33  and the temperature increase : 

0 x l  ， 0 t t   : 
2 2 2

3333 33 33 33 3
2 2 2

( , ) ( , ) ( , )( , ) 0a x t x t f x tx t
x t x x

   

 

  
   

   
                              (5) 

2 2 2
33 33 33 3

2 2 2
03 03 03 03

( , ) ( , )1 ( , ) 1 ( , ) ( , ) 1 ( , ) 1[ ] [ + ( , )] 0T x t x t kx t x t x t R x t R x t
C t t t t t t Ct x C t t
     

  

     
     

     

   (6)  

Where 3( , )f x t and ( , )R x t are body force component and the intensity of body heat source, 
respectively,  , C are the density and the specific heat per mass measured in the state of constant 
strain. Using eqs.(8, 9), 33( , )x t  and ( , )x t can be calculated out. Then taken them into eq. (3), the 
stress components 33 ， 11 22( )   can be derived. Here the spread interval size l and spread 
duration time t  are introduced, combined with the parameters 3333a , 1133a , 3 1 ， , 3k ,  , C , 03t and 

0T , the one-dimensional thermal mechanical interaction model with C-V type non-Fourier heat 
transfer medium can be constituted to seek the unknown functions 33( , )x t and ( , )x t .  

3. RESULTS 

Suppose the model mB  is similar with model B  in geometric, and they are C-V type non-Fourier 
heat conduction medium. Moreover, one dimensional transient with thermo-mechanical interaction 
has taken place on them, respectively. Two groups parameters 3333 1133 11 33 0 0, , , ,m m m m m m m m ma a C k T t  （ ） （ ） （ ） （ ） （ ） （ ） （ ） （ ）（ ）， ， ， ，  ，

,m mt l（ ）（ ）and 3333a , 1133a , 11 , 33 ,  , C , k , 0T , 0t , t , l have been taken to describe them. For 
introduced both the double 11 parameters, the functions 33 , , displacement 3u , two quantities 3f , R , 
variables x  and t , the 16 similarity ratios can be defined as follows: 

( ) ( )m m
l x x l l   , ( ) ( )m m

t t t t t     , ( )

3 3

m

f f f  , ( )m

R R R  , ( )

33 33

m

   , ( )m
   ，

( )
3 3333 3333

m
a a a  , ( )

3 33 33

m

   , ( )m
   , ( )m

C C C  , )(m
k kk , ( )

0 0
m

T T T  , ( )
0 03 03

m
t t t   (7)  

and 

                                ( )m
u u u  ， ( )

1 1133 1133
m

a a a  ，
( )

1 11 11

m

                                                      (8) 
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Here, the 16 similarity ratios are divided into two groups. 13 similarity ratios listed in eq. (7) are 
related to the control eq. (5，6), 3 similarity ratios listed in eq.(8) are related to 3u , 11 22,  . 
Considering the eq. (7), the eq. (5, 6) can be expressed by the physical quantities of model mB , 

( ) ( )0 m mx l  ， ( ) ( )0 m mt t   ： 
( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )

3 3333 33 33
2 ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )2 ( ) ( ) ( )
3 33 3

2 ( ) ( ) ( ) ( )

( , ) ( , )

( , )( , ) 0

m m m m m m m
a

m m m m m
l t

m m m mm m m
f

m m m m
l l

a x t x t
x x t t

f x tx t
x x x

 



 



    

   

   

   

 


   


  

  

                               (9) 

( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )
3 33 33 33

2 ( ) ( ) ( ) ( ) ( ) ( )
0 03

( )2 ( ) ( ) ( ) ( ) ( ) ( )
3

2 ( ) ( ) ( ) ( ) 2 ( ) ( ) (
0 03 0 03

( , ) ( , )1[ ]

( , ) ( , )1[ ]

m m m m m m m m
T t

m m m m m m
C t t

mm m m m m m
t k

m m m m m m
t t C t l

T x t x t
C t t t t

kx t x t
t t t t C t

 



 



      

    

    

      

 


  

 
  

  

2 ( ) ( ) ( )

) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
0 03

( , )

( , )1 1[ + ( , )] 0

m m m

m m m

m m m
m m mtR

m m m m
C t t

x t
x x

R x t R x t
C t t





    



 


 



       (10) 

For the model body mB , the same equations like as eq. (5, 6) should also be satisfied, namely,  
( ) ( )0 m mx l  ， ( ) ( )0 m mt t   ： 

( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )
3333 33 33
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 ( ) ( ) ( )
33 3
( ) ( ) ( ) ( )

( , ) ( , )

( , )( , ) 0

m m m m m m m

m m m m m

m m m mm m m

m m m m

a x t x t
x x t t

f x tx t
x x x

 



 



 


   


  

  

                                            (11) 

( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )
33 33 33

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
03 03

( ) 2 ( ) ( ) ( ) (
3

( ) ( ) ( ) ( ) ( ) ( ) ( )
03

( , ) ( , ) ( , ) ( , )1 1[ ] [ ]

( , ) 1 [

m m m m m m m m m m m m m m

m m m m m m m m m m

m m m m

m m m m m m m

T x t x t x t x t
C t t t t t t t t

k x t R
C t x x C

    





 

   
  

     

 
 

 

) ( ) ( )
( ) ( ) ( )

( ) ( )
03

( , ) 1+ ( , )] 0
m m m

m m m
m m

x t R x t
t t




         (12)  

Comparing eq. (11, 12) with eq. (9, 10), the normalized conditions will be given by: 
2 22

33
2 21, 1, 1t t fa t

l l l

 

   

     

      
   ， 

2
3

2
0 0

1, 1, 1, 1T t k t R t

C t C t l C

 

    

       

          
                  (13) 

According to the 5th formula in (13), the following can be obtained: 

0t t   or  ( ) ( )
03 03

m mt t t t                                                                  (14) 

For the body B , the following parameters can be introduced 

1 3333V a  ， 2 3 03V k Ct ， 2 2
33 0V T C                                       (15) 

Where 1V and 2V  represent the propagation speed of the simplex one dimension elastic longitudinal 
wave and the simplex heat waves along the thickness direction, respectively. V  is the speed 
dimensional physical quantity relating to the degree of thermal-mechanical interaction. The 
"simplex" refers to the eq. (15) is derived in absence of thermal-mechanical coupling. Four non-
dimensional quantities are defined as: 
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0 03S t t  ，
2

1
1 2( )

VS
l t



， 2 2

2
03

V VS
l t l t



，

2

2( )
V

S
l t



 


                             (16) 

Analogously, for the body mB , the parameters ( ) ( ) ( )
1 2, ,m m mV V V and non dimensional quantity ( ) ( )

0 1,m mS S  , 
( )
2

mS , ( )mS are introduced. According to the normalization conditions (13), the similarity criterions 
can be conducted from the formula (13):  

( )
1 1

mS S ， ( )
2 2

mS S ， ( )mS S                                                              (17) 

The 4th similarity criterion can be conducted from eq. (14),  

                                                     ( )
0 0

mS S                                                                                        (18) 

According to the conditions (13), the similarity conditions of body force and body heat source, and 
the relationship between similarity ratios of field components 3u , 33 and  are both obtained: 

2
f l

t

 

 
 ，          CR

t





 

 
                                                               (19) 

                                          
2

3
2

3

T l

C t

 

  

   

    
  ,        u

l






                                                            (20) 

Here the geometric equation 33 3,3u  has been used. 

4. CONCLUSIONS 

The necessary conditions of the similarity between two phenomenons with thermal mechanical 
interaction for one-dimensional propagation is that the 4 non-dimensional quantities 0 1 2, , ,S S S S  
should be equal, respectively. Strictly speaking, it is a set of rigor conditions, since phenomena of 
one dimensional transient with thermo-mechanical interaction should be contained in these 
criterions. While if to preserve 1 ,S S only, i.e. to abandon the criterions 0 2,S S , the similarity 
criterions will suite to the macro-scale thermal mechanical interaction , and it will be satisfied easily 
to some extend in practice. 
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ABSTRACT 

Based on the sensitivities of material properties to temperature and the complexity of service 
environment of thermal protection system on the spacecraft, ultra-high-temperature ceramics 
(UHTCs), which are used as thermal protection materials, cannot simply consider thermal shock 
resistance (TSR) of the material its own, but need to take the external constraint conditions and the 
thermal environment into full account. Through a numerical simulation on hafnium diboride (HfB2), 
a detailed study of the effects of the different external constraints and thermal environments on the 
TSR of UHTC had been made. This study can provide a more intuitively understanding of the 
evolution of the TSR of UHTCs during actual operation conditions. 

Key Words: Ultra-high-temperature ceramics, thermal shock resistance, thermal environment, 
numerical simulation, constraint. 

1. INTRODUCTION 

Ultra-high-temperature ceramics (UHTCs) is a family of materials that have melting points higher 
than 3000oC, and can be potentially used at temperatures above 2000oC in an oxidizing environment. 
As important ceramics and promising candidates for high temperature applications of thermal 
protection systems (TPS), UHTCs are attracting growing attention.  

Current research shows that thermal shock resistance (TSR) of ceramic materials is poor because of 
their inherent brittleness. Thermal shock is the cause of damage of ceramic materials [1]. The TSR 
performance of ceramic materials depends on the mechanical properties and thermal properties of 
the materials [1,2]. Moreover, the effects of the geometry of components and environmental media 
are also very important points because the properties of the materials are sensitive to the 
temperatures and the complex thermal environments experienced by the spacecraft surface. At 
present, the research of TSR mostly focuses on experimental way [2-3]. And several evaluation 
theories of TSR have been reported [1,4,5]. Moreover, Song etc. enhanced thermal shock resistance 
of ceramics through biomimetically inspired nanofins which had proved to be a very effective way 
[6]. However, few experiments have considered the influences of temperature of the cooling 
medium and the different external constraint conditions as they are difficult to conduct. And the 
current experiment is difficult to simulate the thermal environment and external constraint 
conditions suffered by the UHTCs in the actual operation and difficult to reveal the changes of the 
TSR of the thermal protection materials in the operating process. Moreover, such experiments 
cannot meet the demand of the comprehensively understanding of the TSR of materials. 

Thus hafnium diboride (HfB2) is used to study the effects of the external constraint conditions and 
different thermal environment on the TSR of the UHTC in detail through numerical simulation. The 
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study provides a more comprehensive understanding of the changes of TSR in the course of the 
entire service of the material. Furthermore, this paper provides some possible ways for the 
application design, improving the TSR and reliability of the thermal protection materials. 

2. FINITE ELEMENT ANALYSIS MODEL 

In order to simulate the effects of different external constraint conditions on the TSR performance 
of the UHTC thermal protection materials, the geometric model and the finite element mesh are 
employed, as shown in Figure 1. Assumed that, 1) the UHTC material is isotropic; 2) there is no 
initial stress in the material at thermal shock initial temperature; 3) The connection between the 
UHTC material and the external constraints (the frame) is perfect; 4) The temperature of the 
external constraint (the frame) is constant. 

FIGURE 1.  Geometric model and the finite element mesh 

Hafnium diboride (HfB2) is used for simulation example with material properties [5,7,8] shown in 
Table 1. 

Material parameters Values and expressions 

Tm (°C) 3400 

E(GPa) ( )0 1 2 2

m mT T
T T

m mE E BTe B T B T T B T e
− −

= − + − + −

E0(GPa), B0, B1, B2 441, 2.54, 1.9, 0.363 

α (°C-1) (2ln(T)–5) × 10-6

k (W⋅(m⋅°C)-1) – 8.3455 × ln(T) + 127.68 

ν 0.12 

Cp(T) (cal/mol) 73.346 + 7.824 × 10-3T – 2.301×106T-2

ρ(g.cm-3 ) 10.5 

TABLE 1. Temperature-dependent material properties of HfB2

3. RESULTS AND DISCUSSION 

Tensile stress is formed at the surface of ceramic materials during the cooling process, which is 
more dangerous than the heating process. Therefore, this paper takes the calculation of cooling 
process as a model for analysis. Single-sided cooling of the UHTC plate in various cooling rates 
with different constraint conditions (corresponding to different frame material’s Young’s modulus) 
and thermal shock initial temperatures are also simulated.  

 

UHTC 

Frame 
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Figure 2 shows that, in the same constraint, the critical fracture temperature difference that UHTCs 
can withstand rapidly decreases initially and slowly rises as the cooling rate increases. Therefore, 
there is a dangerous zone of cooling rate where the TSR is lowest when the cooling rate is relatively 
minor. From this result, the previous conclusion, that the higher the cooling rates the smaller the 
critical temperature difference that the material can withstand, is considered one-sided. This is due 
to restrictions of experimental methods. Experiments cannot reproduce the whole real and complex 
processes of thermal shock that the thermal protection materials suffered during the causative 
processes. The common experimental methods are also so simple and harsh that the understanding 
of TSR of materials is extremely one-sided. This is especially true for the UHTC thermal protection 
materials, which suffer from a wide and drastic temperature change. In addition, it can be seen from 
the figure that either the higher or the lower thermal shock initial temperature corresponds to the 
higher critical temperature. 

   

FIGURE 2. Relationship between critical fracture temperature ΔT corresponding to different thermal 
shock initial temperature (in the figure is InT) and cooling rate 

 

FIGURE 3. Relationship between critical fracture temperature corresponding to different thermal 
shock initial temperature with the same cooling rate and the Young’s modulus of constraint material 

As the figure 3 shows, when the cooling rate is 50 ºC/s, the critical fracture temperature difference 
of the material corresponding to the same initial temperature of thermal shock decreases 
monotonically as the external constraints are enhanced. Wihle the cooling rate is high, with the 
enhancement of external constraints, the  critical fracture temperature difference of the material 
initially increases and then decreases. Moreover, if some certain constraints are imposed upon the 
materials, the materials can withstand the more critical fracture temperature difference. And the 
critical fracture temperature difference is sensitive to external constraints when these constraints are 
small; however, with the increase of external constraints, the sensitivity decreases rapidly. The 
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lower the cooling rate, the more sensitive the critical fracture temperature difference is to the 
changes of external constraints.From these results, the reasonable adjustments to the connections 
between the thermal protection materials and the main structure in the corresponding causative 
environment can significantly improve the TSR of the thermal protection materials. 

4. CONCLUSIONS 

A reasonable finite element model was established by considering the factors of external constraints 
and thermal environment in this paper. The result shows that when considering the external 
constraints and the thermal environment, the TSR of UHTC thermal protection materials is no 
longer the TSR of the material its own. There is a dangerous zone of cooling rate where the TSR is 
lowest when certain constraints are applied upon the material. The critical fracture temperature 
difference is sensitive to external constraints when the constraints are small, however, with the 
increase of the external constraints, the sensitivity decreases rapidly. In addition, in the role of 
external constraints, when the temperature change rate reaches a certain value, the higher the 
temperature change rate, the greater the critical fracture temperature difference. That is to say 
reasonable adjustments in the connections between the thermal protection materials and the main 
structures can significantly improve the TSR of thermal protection materials, which provides new 
ideas for structural optimization. 
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ABSTRACT 

The thermal power around a blunt crack in elliptical inhomogeneity under electric loads at infinity 
is dealt with. Utilizing the Muskhelishvili complex variable method, the closed form solutions are 
derived. The results show that the thermal power concentrate is more severe in the crack tip when 
the inhomogeneity became larger. However, the thermal power decreases with the increase of the 
distance and the angle. 

Key Words: thermal power, interfacial blunt crack. 

1. INTRODUCTION 

Many facilities, in which accidents and failures caused by thermal environments and thermal 
loading conditions play a fatal role in the assurance of safety, stimulate the subject of thermal 
fracture analysis of structural components to develop at an ever higher rate [1-3]. In the area of 
plane thermoelasticity, basic singular solutions have been developed for an infinite medium, a semi-
infinite medium, a crack in an infinite medium and other kinds of geometries under the effect of a 
point thermal inclusion or a point heat source [4-5].  

When electric loads are applied to a conductor which there are cracks inside, the current concentrate 
occurs, meanwhile the corresponding thermal power concentrate would produce thermal stress, 
change the microstructure of the material and even leads to material failure.  

Hence, the thermal effect around a blunt crack in elliptical inhomogeneity under electric loads at 
infinity is discussed in this paper. The closed form solutions are derived, and the thermal power 
concentrate is discussed in detail. 

2. SOLUTION 

Consider an infinite matrix with electroelastic modulus 
2 2
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cylindrical inhomogeneity with electroelastic modulus 
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M  with a confocal elliptical 

hole. The two materials are assumed to be perfectly bonded along the interface, the elliptical hole 
surfaces are considered traction-free.  

The transform function 
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which can map the elliptic contours 2 2 2 2/ / 1x a y b   and 2 2 2 2
1 1/ / 1x a y b  in the z -plane on to 

the circles 1  and /R r  in the  -plane (Fig. 1). Here ( ) /( )R a b a b   , 

1 1 1 1( ) /( )r a b a b   , 2 2 2 2
1 1c a b a b    , and a  and b  are, respectively, the lengths of the 

major semi-axis and minor semi-axis of the elliptical inhomogeneity, 1a  and 1b  are, respectively, 
the lengths of the major semi-axis and minor semi-axis of the elliptical hole. 

Under the action of the remote applied loadings  , the complex potential in the   -plane can be 
obtained as 
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FIGURE 1. The blunt crack in elliptical inhomogeneity 

From Eqs. (1)- (2), the complex potential in the z  -plane can be derived. 
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The current density around the blunt crack can be expressed as 
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where ( 1,2)i i   is the electric conductivity. 

The thermal power which produced by the current can be expressed as 
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3. RESULTS 

Assuming that matrix material is PZT-5H and inhomogeneity material is PZT-4. The electro-elastic 
properties of PZT-5H and PZT-4 are: 
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Fig.2 shows the normalized thermal power 1 0/Q Q  versus 1/z a  with different b  at 3
1 10a  , 

4
1 10b  , where 0Q  is the thermal power of the right endpoint of a blunt crack inside infinite 

PZT-4 matrix. It is seen that the thermal power concentrate in the crack tip is more severe for a 
large inhomogeneity. However, the thermal power decreases with the increase of the distance. 



 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 

Fig.3 shows the normalized thermal power 1 0/Q Q  versus   with different b  at 3
1 10a  , 

4
1 10b  , where 0Q  is the thermal power of the right endpoint of a blunt crack inside infinite 

PZT-4 matrix. It is seen that the thermal power decrease with the increase of  . 

 

 

 

 

 

 

 

 

 

4. CONCLUSIONS 

The thermal power around a blunt crack in elliptical inhomogeneity under electric loads at infinity 
is dealt with. Utilizing the Muskhelishvili complex variable method, the closed form solutions are 
derived. The results show that the thermal power concentrate is more severe in the crack tip when 
the inhomogeneity became larger. The thermal power decreases with the increase of the distance 
and the modulus of the angle. 
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ABSTRACT 

The problem of wave propagation in an interacting rotating random inhomogeneous magneto-
thermo-visco-elastic medium has been studied. The perturbation technique relevant to stochastic 
differential equations has been employed to obtain the relation connecting displacement amplitudes 
of waves propagating in the interacting media. The medium has been assumed to be weakly thermal 
and electrically weakly conducting. A more general coupled dispersion relation for longitudinal and 
transverse waves has been deduced to determine the effects of thermal and magneto-viscoelastic 
parameters, rotation and conductivity on the phase velocity of the coupled waves. The equations 
have been analyzed for a particular form of thermo-mechanical coupling auto-correlation function. 
Cases of low and high frequencies have also been studied.  

Key Words: Magneto-thermo-viscoelastic, Random, Rotating, Auto-correlation 

1. INTRODUCTION 

In recent years, considerable interest has been shown in the study of plane thermoelastic, magneto-
thermoelastic, and magneto-thermo-visco-elastic wave propagation in an infinite non-random or 
random and non-rotating and rotating media by many authors.   

It has been found important to study the effects of random inhomogeneities of media, viewed as a 
departure from the deterministic models [1]. In the most recent study, Chottopadhyay and 
Bhattacharyya have been able to compute Green’s tensor for a conducting magneto-viscoelastic 
medium [2] and employ the same to investigate wave propagation in random conducting, magneto-
thermo-viscoelastic medium [3]. In the present paper, however, the problem of wave propagation in 
a rotating, random magneto-thermo-visco-elastic medium [4] has been investigated following 
classical theory of heat conduction. The resulting magnetic field is hH


0 , where 0H


is the 

external magnetic field and h


, the small perturbation in the magnetic field. The dispersion relation 
is evaluated, when the conductivity )(  and other material constants undergo small random 
variations. 

The mathematical study of the phenomena of wave propagation in random elastic and 
electromagnetic materials was carried out by Keller [5] and Karal and Keller [6]. The smooth 
perturbation method has been employed for the solution of the resulting stochastic differential 
equations. The field equations are put in the form 

 fLV   (1) 

where L  is the random linear operator, V  is the field quantity, and f  is  the source term. 
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Assuming that  
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where  1
0
L  is obtained by solving 
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where ijG  is the appropriate Green’s tensor for .0L  

2. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS 

An infinite isotropic, homogeneous (thermally as well as electrically) conducting random magneto-
thermo-viscoelastic medium with density   at uniform initial temperature 0  has been considered. 

The medium is rotating with an angular velocity ,n̂


 where n̂  is a unit vector representing 
the direction of the axis of rotation. Let u   be the dynamic displacement vector measured from a 
steady state deformed position and supposed to be small. Let H


be the magnetic vector and j


 the 

current density vector of the electromagnetic field. Assuming 
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in the magnetic perturbation field equation, the displacement equation of motion in the rotating 
magneto-thermo-visco-elastic medium and the energy equation, one gets the three field equations, 
after dropping the bars, as 
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and RQNKPM ,,,,,  and S are determined from the governing equations assuming that 
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3. SOLUTION OF THE PROBLEM 

Let the mean field quantity 
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Substitution of (15) into (3) yields three equations. Eliminating B
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4. RESULTS 

Equation (17) represents the relation connecting displacement amplitudes for waves propagating in 
the interacting rotating random magneto-thermo-viscoelastic medium. The term 0M   contains the 
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rotating parameter .  It may be noted that this equation does not include any term involving cross-
correlation functions between magnetic and thermal parameters. If the terms to the order   only are 
retained, the equation (17) reduces to 
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 (18) 

The terms representing the effect of the thermal field do not appear in (18), while the effect of the 
magnetic field is discernible to the first order of . This indicates that in an interacting field of the 
type described here, the effect of the magnetic field is stronger than that of the thermal field. To 
study the effect of the presence of a thermal field, we assume for equation (17) that [8] 

 0)()()( 11  xmxmrRmm


 (19) 

and the other correlation functions vanish. After lengthy calculations it was shown that the effect of 
randomness to the    order term is to increase attenuation of longitudinal type waves. The 
attenuation coefficient was computed. Many other cases were discussed and numerical 
computations made. Low and high frequency waves were considered for both Maxwell and Voigt 
type of viscoelastic medium. Effects of randomness as also of rotation were enumerated; graphs 
were drawn. 
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ABSTRACT 

A new model is put forward to bound the effective thermal conductivity of composites with 
spherical inclusions. According to the principles of minimum potential energy and minimum 
complementary energy, the rigorous upper and lower bounds on the effective thermal conductivity 
of composites with spherical inclusions are derived. The effects of the distribution of spherical 
inclusions on the effective thermal conductivity of composites are analyzed in details.  

Key Words: Bounds, Effective thermal conductivity, Spherical inclusions, Composites. 

1. INTRODUCTION 

The problem of determining the effective physical properties of statistically homogeneous two-
phase composites has an extensive history. Several methods have been developed to derive bounds 
on effective parameters of composites. Hashin and Shitrikman (1963, 1962) have derived bounds 
for effective elastic moduli and magnetic permeability for statistically homogeneous and isotropic 
materials by introducing polarization fields and applying variational principles, respectively. These 
bounds are expressed in terms of the volume fraction, which is the simplest statistical information 
related to the effective properties of two-phase composites. Phan-Thien and Milton (1982) have 
derived the third- and fourth-order bounds for the effective thermal conductivity of composites in 
terms of the perturbation solution to the effective thermal conductivity problem for an N-component 
material.  

2. UPPER BOUND 

For the two-phase composite with spherical inclusions shown in Fig.1, it is assumed that the 
interfaces between spherical inclusions and matrix are perfectly bonded and spherical inclusions are 
non-touching unless the volume fraction of spherical inclusions is equal to 1. This implies that the 
matrix is not disconnected by spherical inclusions. To make the temperature field in the composite 
continuous, we introduce the  -th transition region situated in the matrix for the  -th spherical 
inclusion, which has the inner radius r  and outer radius R , respectively. Thus, the composite 
with spherical inclusions is divided into three kinds of regions denoted by MV , TV  and IV , 
respectively. They are called as the regions of remnant matrix, transition layers and spherical 
inclusions, respectively. For the present model, the temperature fields in these three kinds of regions 
are constructed as follows. 

1) In the remnant matrix 

 0( )M
i iT E x x , MVx  (1) 

where 0
iE  is the uniform temperature gradient and ( )MT x  denotes the temperature field in the 

remnant matrix MV . Without loss of generalization, it is assumed that spherical inclusions do not 
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intersect with the surface S . Thus, the temperature field given by Eq. (1) satisfies the homogeneous  
boundary condition. 

2) In the spherical inclusions 

  0( ) i i i i iT E E x E x     x , Vx ,  1,2,..., N   (2) 

where ( )T x  and iE  are the temperature field and constant temperature gradient components in 

the  -th spherical inclusion, respectively, ix  denotes the coordinate of the center of the  -th 
spherical inclusion, and V  is the volume of the  -th spherical inclusion. 

3) In the transition layers 

   0 0( ) i i i i i i
RT E x E E x x

h
   




    x , Vx ,  ,r R   (3) 

where ( )T x  is the temperature field in the  -th transition layer, r  and R  are the inner and 

outer radii of the  -th concentric spherical shell, respectively, and h R r     and V  are the 
thickness and volume of the  -th concentric spherical shell, respectively. 

 
FIGURE 1 The representative volume V  where the transition region is located in the matrix. 

From Eqs (1)-(3), it is easily verified that the temperature field in the composite is continuous. For 
the temperature field given in Eqs (1)-(3), we can obtain the temperature gradient fields in three 
kinds of regions. Application of classical variational principles for steady state conduction in 
conjunction with linear admissible temperature can yield the corresponding upper bound.  
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where e  is the effective thermal conductivity of composites, I  and M  are the thermal 
conductivities of inclusions and matrix, respectively, and Ic  and Mc  are the volume fractions of 
inclusions and matrix, respectively. Here, the parameter   is defined in Wu (2010). 

3. LOWER BOUND 

ix
 

r  R  

V  
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For the present model, three kinds of new potential functions in the remnant matrix, transition 
layers and spherical inclusions are constructed to make the normal components of heat flux vector 
continuous on interfaces between remnant matrix and transition layers and between transition layers 
and spherical inclusions. The heat flux  iQ x  can be determined by the differentiation of potential 

function   x  with respect to variable ix . 

    ,i iQ x x , Vx  (5) 

These three kinds of potential functions are expressed as the following forms. 

1) In the remnant matrix 

 0( )M
i iQ x x , MVx  (6) 

where  M x  and 0
iQ  are the potential function and constant heat flux components in MV , 

respectively. 

2) In the spherical inclusions 

 ( ) i iQ x  x , Vx ,  1,2,..., N   (7) 

where ( ) x  and iQ  are the potential function and constant heat flux components in the  -th 
spherical inclusion, respectively. 

3) In the transition layers 

     0 0( ) i i i i i iQ x Q Q x x f  

    x , Vx ,  ,r R   (8) 

where ( ) x  is the potential function in the  -th transition layer and  f   is a function of 
variable   in the  -th concentric spherical shell.  

For the potential functions given in Eqs (6)-(8), we can obtain the heat flux fields in these three 
kinds of regions. Thus, the heat flux field in the remnant matrix satisfies the homogeneous 
boundary condition. Application of classical variational principles for steady state conduction in 
conjunction with constant admissible heat flux can yield the corresponding lower bound. 
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 (9) 

Here, the parameter   is defined by Wu (2010). 

4. RESULTS AND DISCUSSIONS 

To calculate the effective thermal conductivity of composites, we need to determine the geometric 
parameters   and  .  They are expressed as by two new parameters   and   

  3( 1)M Ic c   ,  3( 1)M Ic c    (10) 

To compare the present bounds with Hashin-Shtrikman (1962) bounds, the upper bound for 5   
and the lower bound for 1   are given, respectively. From Fig.2, it can be seen that the upper 
bound for 5   provides a significant improvement over Hashin-Shtrikman (1962) upper bound 
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and the lower bound for 1   coincides with Hashin-Shtrikman lower bound. Since Hashin-
Shtrikman (1962) lower bound is the same as the CSA (composite spheres assemblage) result of 
Hashin (1962), it is believed to be best possible in terms of volume fractions.  

From Fig.3, it can be observed that the upper bound decreases and the lower bound increases with 
the decreasing of geometrical parameters   and  . It is interesting that the upper bound is very 
close to the lower bound which coincide with the CSA result of Hashin (1962) when 1   . 
Right now, the distribution of spherical inclusions is consistent with the composite spheres 
assemblage. 
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FIGURE 2 Comparison of the present bounds          FIGURE 3 Variations of the present bounds 

                 with Hashin-Shtrikman bounds.                             with the volume fraction of inclusions. 

5. CONCLUSIONS 

A new model is developed to bound the effective thermal conductivity of composites with spherical 
inclusions. Based on the principles of minimum potential energy and minimum complementary 
energy, the upper and lower bounds are rigorously derived. In contrast to Hashin-Shtrikman (1962) 
bounds and higher-order bounds, the present bounds still are finite when the thermal conductivity of 
spherical inclusions tends to infinity and zero. As we saw before, the present upper bound offers a 
substantial improvement over Hashin-Shtrikman upper bound. In comparison with higher-order 
bounds which involve the complicated integrals of multi-point correlation functions, the present 
bounds are rigorous and only are related to simple calculations. 
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ABSTRACT 

A reconstruction algorithm is designed for constructing cell-centered finite volume schemes on 
skewed meshes for solving anisotropic diffusion problems. We show that a balance point can be 
found for each edge on polygonal meshes. At this point, the edge unknowns are reconstructed 
accurately with a simple linear interpolation formula. The scheme accuracy is demonstrated by the 
numerical results. 

Key Words: Anisotropic diffusion, Finite volumes, Reconstruction. 

1. INTRODUCTION 

Skewed or non-orthogonal meshes arise in various fields, e.g., grid generation on physical domains 
with complex geometry, or numerical solutions of diffusion problems in Lagrangian radiation 
hydrodynamics. In the construction of cell-centered finite volume schemes for diffusion problems, 
due to the skewness of the grids, auxiliary unknowns defined at the vertices or edges are often 
introduced in addition to the primary unknowns at the cell centers. However, the introduction of 
auxiliary unknowns leads to greater computational costs or more complex algorithms than those with 
cell-centered unknowns only, especially when the diffusion scheme is used to solve the diffusion 
equation in a coupled radiation hydrodynamic problem. 

An efficient and accurate reconstruction algorithm is proposed in [1]. With this algorithm, edge 
unknowns are defined at a balance point on the edge, instead of at the midpoint. In this way, the 
edge unknowns can be approximated accurately with a simple linear interpolation formula in which 
only the two adjacent cells are used as interpolation stencils. Here we extend the reconstruction 
algorithm to anisotropic diffusion problems. The location of the balance point is calculated by 
imposing the flux continuity condition for anisotropic problems. So the heterogeneous tensor can be 
dealt with strictly. 

Moreover, the reconstruction algorithm is used for approximating the gradients of the cells with 
edge unknowns. In a previous paper [2] the edge unknowns are defined at mid-points in IDC 
(improved deferred correction) scheme. The scheme accuracy is improved when the mid-points are 
replaced by our balance points. Moreover, the IDC scheme with our new reconstruction algorithm is 
generalized to be suitable for anisotropic problems.  

2. RECONSTRUCTION ALGORITHM AND DISCRETIZATION OF FLUX 

The diffusion problem under consideration is: 

( )u f   in      (1) 

u g    on                 (2) 



 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 

where  is an open bounded subset of 2R and  its boundary,   is the anisotropic diffusion 
tensor, f  is the intensity of sources, and u  is a scalar unknown function. In case of heat diffusion, 
u  denotes the temperature. 

The diffusion flux on the edge is defined as 

,u n dl u n dl  
 
       F                 (3) 

where 

, .Tn n    

For any given point I  on the edge, we have 

, , ,I I In t             (4) 

where I KIKI d  , K  is the cell center, t  is the unit tangential vector of the edge, ,I and 

,I  are the coefficients whose values depend on the geometry and the diffusion tensor. 

Multiplying both sides of (4) with u , we have 

, , ,
,

.I K
I I

K I

u uu n u t
d          

                   (5) 

The superscripts - and + indicate the limits of a function from the left and right hand of the edge 
respectively. Integrating both sides of (5) over the edge, we obtain the discretization of the flux 

, ,
,

.I K
I I

K I

u uF S u t dl
d    


     
 

     
 

    (6) 

Using similar notations, we also have 

, ,
,

.I L
I I

L I

u uF S u t dl
d    


     
 

      
 

    (7) 

The continuity condition of the normal flux can be written as 

0F F 

         (8) 

Combining (6)-(8), we eliminate the auxiliary unknowns and obtain 

, ,I I
L KF u u u t dl  

 


   

  

   

  


   

  
             

   (9) 

where  

   , ,

, ,

, .
K L

n n S n n S
d d

       

 

 

 

   

 
 

   

Moreover, certain balance point rJ  is obtained with (6)-(8) per edge. At this point, the edge 
unknowns can be calculated accurately using the linear interpolation formula 
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 .Jr K Lu u u 
 

 

 
 

 

 
 

 
 


    (10) 

The location of rJ  and  its value can be used to obtain the approximation of u  in (9). 

3. NUMERICAL RESULTS 

Consider the problem (1)-(2) in the unit square  
20,1 . Dirichlet boundary condition is imposed. 

The diffusion tensor is given by TRDR  and  

1

2

0cos sin
, ,

0sin cos
R D

 

 

   
    
   

 

where 
5
12


  , 2 2
1 1 2x y     and 2 2

2 1 2x y    . The exact solution is 

( , ) sin( )sin( ).u x y x y   

 
FIGURE 1. The 8 8  (left) and 16 16  (right) random grids. 

 

Cell number 88 1616 3232 6464 128128 
BP method 

L2 error 
rate 

0.117E-1 
- 

0.288E-2 
2.02 

0.651E-3 
2.15 

0.181E-3 
1.84 

0.472E-4 
1.94 

MP method 
L2 error 

rate 
0.122E-1 

- 
0.130E-1 

-0.09 
0.142E-1 

-0.13 
0.154E-1 

-0.11 
0.149E-1 

0.04 

TABLE 1. Convergence on a sequence of random meshes. 

Calculations are performed on a sequence of random grids. Two of them are shown in Figure 1. We 
compare the numerical results obtained by our new reconstruction method (denoted by BP method) 
and that obtained by the method used in [2] (denoted by MP method).  The L2-norm of the error on 
the random grids is given in Table 1. It shows that the convergence rate is close to 2 if the BP 
method is adopted. For the MP method, however, the errors do not reduce as the grids are refined. 
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4. CONCLUSIONS 

The IDC scheme is extended to handle anisotropic diffusion problems in this paper. For 
reconstructing the gradients in the scheme, a new method is proposed, and its accuracy is 
demonstrated by the numerical results. 
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ABSTRACT 

A new iteration scheme named adaptive Picard-Newton iteration is studied for a nonlinear coupled 
parabolic-hyperbolic system. It can accelerate the resolving procedure with flexible adjustment of 
the adaptive parameter. It includes Picard iteration and Picard-Newton iteration as special cases. 
Theoretical analysis shows its solution has super-linear convergence rate to the solution of the 
nonlinear discrete scheme of the original problem, and second order spatial and temporal 
approximations to the real solution of the problem. Numerical tests verify its high accuracy and 
efficiency. Accelerating factors are picked up by comparisons of several iterations, and significant 
synthesis acceleration is gained. 

Key Words: Coupled Parabolic-Hyperbolic System, Nonlinearity, Adaptive Iteration Acceleration. 

1. INTRODUCTION 

Coupled parabolic-hyperbolic systems are often used in describing high-temperature and high-
pressure radiation (magnetic) hydrodynamics in many application fields. In this paper, iteration 
method is studied for solving a nonlinear coupled parabolic-hyperbolic system as follows.   

( ( , , , , ) ) ( , , , , , , , , ),t x y x yu A x y t u v u f x y t u v u u v v    

( ( , , , , ) ) ( , , , , , , , , , ).tt x y x y tv B x y t u v v g x y t u v u u v v v    

Adaptive iteration acceleration is designed and theoretical analysis is made. As an essential 
component of radiation hydrodynamics, radiation diffusion has the character of nonlinearity and 
strong coupling. For nonlinear coupled problem, fully implicit scheme has the merits of being able 
to cancel the restriction on time step size needed in explicit scheme and operator time-splitting 
method without accuracy loss [1]. Hence it is favourable for transient problems. However it needs 
enormous calculations. For nonlinear schemes, proper iterations are necessary to fulfil fast and 
accurate numerical solution [2]. In this paper, the difficulty coming from nonlinearity is overcome 
by using implicit solution and inductive hypothesis reasoning, and another difficulty from the strong 
coupling is overcome by compatibly considering the features of different equations and using 
comprehensive analysis. Numerical experiment results are presented to verify theoretical analysis. 

2. ADAPTIVE ITERATION ACCELERATION DESIGNED FOR COUPLED SYSTEM 

Adaptive iteration method appropriate for the fully implicit solution of coupled system is proposed. 
The traditional way for solving nonlinear PDE is the so-called discretization-linearization approach: 
firstly, discretize the PDE and get a nonlinear algebraic system (NAS), then linearize this NAS, and 
finally solve the derived linear AS. It is very difficult, sometimes even impossible, to build Newton 
linearization for complex practical applications. A revelatory way named as LD (linearization-
discretization) is put forward to overcome such difficulty [2]: first, linearize the nonlinear PDE, 
then discretize the derived linear PDE and get linear AS to be solved finally. In this way, it is more 

mailto:cuixia09@gmail.com
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convenient to construct new iteration schemes. E.g., Picard-Newton (PN) iteration can be built with 
additional high-order approximation terms in an existing Picard iteration, various discrete iteration 
schemes can be designed by different discretizations for temporal and spatial operators. In this 
paper, by using LD approach, introducing medium variant to diminish the approximation template, 
and approximating the spatial and temporal operators with second-order discretization, an adaptive 
Picard-Newton (APN) iteration acceleration scheme is designed for the first time, which has 
second-order uniform accuracy in both space and time.  

1( 1) 1 1( ) 1( 1)

1( ) 1( 1) 1( ) 1( ) 1( 1) 1( ) 1( )

1( ) 1( 1)

3 / 2( ) / 1/ 2( ) / - ( ( , ) )

({ ( , )[ ] ( , )[ ]} )

( , ) ( ( , )[ , ]) ,

n s n n n n s n s
ij ij ij ij ij

n s n s n s n s n s n s n s
u v ij

n s n s
ij ij

U U U U A U V U

A U V U U A U V V V U

f U V L f U V U V

   

 



     

        

  

  

    

 

 

1( 1) 1 1( ) 1( 1)

1( ) 1( 1) 1( ) 1( ) 1( 1) 1( ) 1( )

1( ) 1( 1)

3 / 2( ) / 1/ 2( ) / - ( ( , ) )

({ ( , )[ ] ( , )[ ]} )

( , , ) ( ( , , )[ , , ])

n s n n n n s n s
ij ij ij ij ij

n s n s n s n s n s n s n s
u v ij

n s n s
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W W W W B U V V

B U V U U B U V V V V

g U V W L g U V W U V W

   

 



     

        

  

  

    
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1( 1) 1 1( 1)3 / 2( ) / 1/ 2( ) / ,n s n n n n s
ij ij ij ij ijV V V V W          

where   is the adaptive iteration parameter, which can be adjusted automatically according to 
predicted adaptive rules in the program. Picard, PN and other iterations can be acquired with 
different choices of this parameter, i.e. 0, 1, and a figure between 0 and 1. The adaptive rules in this 
study depend on the amounts of Newton iterations executed, physical background (spatial gradient 
and temporal gradient), and the property of algebraic matrix (diagonal dominance). 

Notice that slight variations of the APN iteration can derive other iteration schemes, such as the 
Partly Newton iteration (namely NewtonL or NewtonR) with only diffusion terms or reaction terms 
Newton linearized, i.e. , only the adaptive parameters on the left or right hands equal to 1 and others 
are 0. Also algorithms with iteration decoupling and variant updating (DU) can be gained for Picard 
and PN iterations. 

3. THEORETICAL ANALYSIS 

Discrete equation achieved by LD approach has similar appearance with the original equation, 
which makes it available to carry out theoretical analysis. Specially, it is feasible to study the 
convergence property of the iteration solution to the real solution of the original problem, i.e. to 
make error estimate. Difficulties arising from the nonlinearity and coupling between parabolic and 
hyperbolic equations are overcome, by different choices of test functions for different equations, 
and an ingenious use of the method of energy estimation and inductive hypothesis reasoning and 
comprehensive analysis. Complete theoretical result is obtained. It shows that the APN iteration 
solution has second-order spatial and temporal error estimate to the real solution of the original 
problem, and it generally has super-linear convergence ratio except linear and quadratic ratio for 
Picard and PN iterations respectively. In the theoretical analysis, the error estimate and convergence 
ratio are proved respectively with the help of the convergence and stability property [3] of the full 
implicit discrete scheme. 

4. NUMERICAL TESTS AND ANALYSIS 

Abundant numerical experiments are carried out. By comparison calculation, accelerative factors 
are ascertained, theoretical results are verified, and synthesis acceleration effects are assessed. E.g., 
iterations with different temporal accuracy are compared, which demonstrates the second-order 
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scheme in this paper is more accurate and efficient than a first-order counterpoint [4]. Various 
adaptive parameters are chosen in tests, which confirms the error order of the iteration solution to 
the real solution is about 2 in all seven variant function norms (as shown in Tables 1 and 2). 
Average amounts of iterations and iteration convergent errors in each time step are searched, which 
concludes the respective super-linear, linear and quadratic convergence ratio of APN, Picard and 
PN iterations (Table 3). Also APN, Picard and PN iterations are further compared, which shows that 
they have similar desirable accuracy; as to efficiency, APN iteration is superior to PN, while the 
latter is superior to Picard (Table 4,  only a few additional time for adaptive judgment is needed for 
APN iteration). APN, Picard, PN, NewtonR and NewtonL iterations are compared for three 
different problems, which again show the merits of APN iteration (Table 5). Algorithms with and 
without iteration decoupling and variant updating are compared, which indicates the former can 
shrink the scale of calculation hence save computational cost (Table 6). Various adaptive rules as 
mentioned in Section 2 are designed and realized and their influences on computation efficiency are 
observed. By collective utilization of the methods of high accuracy scheme, PN iteration, iteration 
decoupling and updating, adaptive adjustment of iteration parameters, the total iteration amounts 
and computation time are greatly eliminated with same accuracy guaranteed, and decades of 
acceleration effects are acquired (as shown in Table 7, only about 1/30 original cost is needed for 
similar computation accuracy after acceleration). 

  8 8  16 16  32 32  64 64  ord1 ord2 ord3 ord 
0 1.4175e-2 3.6171e-3 9.3008e-4 2.2171e-4 1.97 1.96 2.07 2.00 

0.2 1.4187e-2 3.6213e-3 1.0166e-3 2.1896e-4 1.97 1.83 2.22 2.01 
0.4 1.4186e-2 3.6560e-3 9.1739e-4 2.1501e-4 1.96 1.99 2.09 2.01 
0.6 1.4186e-2 3.6399e-3 9.1920e-4 2.5159e-4 1.96 1.99 1.87 1.94 
0.8 1.4185e-2 3.6176e-3 9.1564e-4 2.5179e-4 1.97 1.98 1.86 1.94 
1.0 1.4184e-2 3.6177e-3 9.1502e-4 2.3585e-4 1.97 1.98 1.96 1.97 

TABLE 1. Approximation errors and orders of the iteration solution to the real solution u 

  u v w  u  v ut vt 
0 2.00 2.01 1.98 1.97 1.97 1.97 1.97 

0.2 2.01 2.01 2.00 1.99 1.99 1.99 1.99 
0.4 2.01 2.03 1.98 1.98 1.98 1.98 1.98 
0.6 1.94 1.92 1.92 1.91 1.91 1.91 1.91 
0.8 1.94 1.92 1.90 1.90 1.90 1.90 1.90 
1.0 1.97 1.90 2.00 2.00 2.00 2.00 2.00 

TABLE 2. Approximation orders of the iteration solutions to the real solutions 

 8 8  16 16  32 32  64 64  
  

out in errstop out in errstop out in errstop out in errstop 
0 10.9 19.7 3.36e-13 9.9 26.7 3.17e-13 8.6 22.8 3.00e-13 7.3 25.0 3.22e-13 
0.2 10.0 29.6 4.87e-13 9.2 32.6 3.77e-13 7.9 28.2 3.84e-13 6.8 28.9 3.42e-13 
0.4 9.4 33.7 2.22e-13 8.5 30.1 2.44e-13 7.4 32.2 2.64e-13 6.4 26.9 2.69e-13 
0.6 8.4 29.5 2.43e-13 7.6 28.8 2.82e-13 6.7 28.5 3.27e-13 5.9 25.2 2.73e-13 
0.8 7.2 24.9 1.80e-13 6.5 27.1 3.01e-13 6.1 25.3 1.49e-13 5.4 23.2 1.62e-12 
1.0 3.4 9.6 1.41e-13 3.0 10.0 3.83e-14 3.0 10.1 6.94e-14 3.0 11.2 8.74e-14 

TABLE 3. Average iteration numbers and iteration convergent errors in each time step 

 N72 P72 APN72 N80 P80 APN80 
Out-it 431 1196 431 682 1289 494 

Inner-it 2016 5265 2016 3661 5650 2335 
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Time 1592.766 4427.656 1599.250 6294.297 11428.531 4530.047 
uemax 2.0738e-4 1.8401e-4 2.0738e-4 1.8879e-4 1.5026e-4 1.8879e-4 

TABLE 4. Comparison of Newton, Picard and APN iterations 

 APN PN Picard NewtonR NewtonL 
1 840.063 833.922 2836.547 1082.25 3387.016 
2 633.687 1472.235 1515.813 1583.906 2213.625 
3 500.859 879.578 1364.75 972.329 1433.953 

TABLE 5. Computation time for various iterations 

 DUP DUPN Picard PN 
Out-it 1842 1022 1853 770 

Inner-it 9522 4602 6392 2857 
Time 1765.859 991.937 3755.609 1669.703 

uemax 2.298e-4 2.274e-4 2.217e-4 2.358e-4 

TABLE 6. Comparisons of decoupling and no-decoupling, Picard and PN iterations 

 τ uemax vemax time 
DUPN2 1/24 2.54e-4 3.80e-4 372.140 

P1 1/288 3.68e-4 4.59e-4 10958.469 

TABLE 7. Synthesiss acceleration  

5. CONCLUSION 

In this paper, adaptive Picard-Newton iteration acceleration with high accuracy is designed by using 
LD approach. By theoretical analysis and numerical experiments, various iteration acceleration 
methods are analyzed. Remarkable acceleration effects are acquired. This method can be extended 
to three-dimensional problems. Its methodology, theoretical and experimental results, and program 
modules can serve as reference and technical support for solving nonequilibrium radiation diffusion 
and radiation transfer problems.   
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ABSTRACT 

In this paper, a finite point method for 2D diffusion equation is developed. The method is based on 
directional derivatives, and is applicable to irregular computational domain. Spatial discretization is 
performed by employing numerical formulae of directional derivatives. A new method for selecting 
steady distribution neighboring point set is presented. An example to show the convergence of the 
method is also included. 

Key Words: diffusion equation, irregular computational domain, finite point method. 

1. INTRODUCTION 

In the last few decades, meshless method, as a new generation of numerical methods, has drawn 
much attention. Among such methods, the strong-form meshless methods are well known as being 
simple and straightforward. To guarantee numerical accuracy and stability, a well designed method 
for selecting neighboring points is always required. In this area, many approaches employ a great 
number of points which always result in an overdetermined system of equations solved by a least 
square procedure (e.g. [1],[2]). In the present paper, we will develop a new method for selecting 
five proper neighboring points only, which facilitate obtaining explicit formulae to approximate 
directional derivatives and subsequently performing spatial discretization. 

The following section includes spatial discretization method and selecting neighboring points 
method. Section 3 presents an example to show the performance of the method. Conclusions are 
drawn in Section 4. 

2. FINITE POINT METHOD FOR DIFFUSION EQUATION 

In this paper, we consider the 2D diffusion equation in the form as follows: 

( ) ,u f in                                                 (1) 
with proper boundary conditions, where , f are given smooth functions, and   is computational 
domain.  

2.1 Spatial discretization for diffusion operator 

Given three non-parallel directions 1 2 3, ,l l l , the diffusion operator ( )u   can be reformed as  

1 1 2 2 3 3

(2 3) (3 1) (12)( )
(12)(31) (12)(23) (23)(31)

u u uu
l l l l l l

   
      

     
        

where
 
( ) sin( , ), ( ) cos( , )i j i ji j l l i j l l  . 
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Suppose that there are five proper neighboring points indexed by “ 1, 2, 3, 4, 5 ” around point O , 
and “1' ” is the midpoint of the line connecting point 1 and O . Expanding 1'

1
( )u

l 


 at point O  

along direction 1l  gives  

21
1' 1

1 1 1 1

( ) ( ) ( ( )) ( ).
2O O
lu u u O l

l l l l
  

   
   

   
                                  (2) 

1l  is the distance between point 1 and O . Approximating 1'( )  by 1( ) / 2O   and 1'
1

( )u
l


   

by 1 1( ) /Ou u l   in Eqn. (2) results in 

1 1
1

1 1 1 1 1

2 ( )
2

O O
O

O O

u uu u O l
l l l l l

 
 

       
       

         
, 

where 
1

( )O
u

l



 can be approximated by the formulae of directional derivatives (see [3]), that is 

5
2

1
11 1

1 ( ) ( )j j O
jO

u a u u O l
l M l 

 
    

  
 , 

1, jM a  are some combinations of algebraic areas of triangles spanned by  point O  and its 
neighbors,  and 0M   is the so-called solvability condition.  

The discretization for 
2 2

( )O
u

l l


 

 
 and 

3 3

( )O
u

l l


 

 
 are analogous. Therefore, the diffusion 

operator is fully discretized.  

2.2 Selecting neighboring points 

To guarantee the numerical process stable, a method for selecting steady distribution neighboring 
point set is desired which requires | |M  to be greater than some positive number for all points in 
computing domain. Rewrite M  as 

*
1 2 3 4 15 25 35 45,M M l l l l l l l l          

where  
* (23)(41)(125)(345) (12)(34)(235)(415)M    

and 5 ( 1,2,3,4)il i   denote the distances between “i” and “5”. 

Obviously, the size of *M  which mirrors angle measure is equivalent for different problems. 
Therefore, using *M  to discuss the neighboring point distribution is an appropriate approach. 

For any point i , its neighbors should be chosen in an appropriate point set denoted by iG , which is 
neither too large nor too small, in general, it is proper to include 20 points or so in it. For the fixed 
discrete points in computing process, background grids can be adopted to divide the discrete point 
set into many small scale point sets which can be chosen as iG  . 

For any point i , select its neighbour points 1,2,3,4,5  in the local set iG  contained  point i  in turn 
as follows: 

Step 1:  select a nearest point to “i” in iG  as “1.” 
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Step 2: select a nearest point to “i” in iG  as “2” which satisfies  0(1, 2)  , where 0  is a 
parametric angle. 
Step 3: select a nearest point to “i” in iG  as “3” which satisfies  0(2,3)   and (1,3) 0 , 
otherwise, go to step 1 to select  a secondary nearest point as “1”, and repeat step 2 and step 3 until 
“3” is selected. 
Step 4: select a nearest point to “i” in iG  other than “1”, “2” and “3” as “4.” 
Step 5: select a nearest point to “i” in iG  other than “1”, “2” ,”3” and “4” as “5” which satisfies 

*
0(1,2,3,4,5)M C , where 0C  is a positive constant always given by 0 0.1C   in practical 

application. 

3. RESULTS 

Example 1.  To solve the diffusion equation as follows 
3

2
tanh ( ), ( , ) ,

( , ), ( , ) ,

yxu e x y

u g x y x y

  


   
where  is the boundary of  , and ( , )g x y  is given by the exact solution 

2
( , ) tanh( )yxu x y e .  

The computational domain   is the so-called C-type domain shown in Figure 1. 

 

FIGURE 1. C-type computational domain 

Define the discrete norm error by 
1/ 2
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1/ 2
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where iU  denotes the numerical solution at ( , )i ix y , and N  is the total number of discrete points. 
The corresponding numerical results are presented in Table 1-2. 
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N  2AL  2RL  AL  RL  

120 1.4856E-4 5.4931E-4 6.4180E-4 2.5668E-3 

480 4.1929E-5 2.3084E-4 1.2877E-4 1.1381E-3 

2000 9.3024E-6 4.8277e-5 3.1864E-5 1.8086E-4 

8000 2.3509E-6 1.2048e-5 1.0331E-5 6.6279E-5 

Convergence Rate 1.9939 1.8369 1.9857 1.7560 

TABLE 1. The errors of u on C-type computational domain 

N  2AL  2RL  AL  RL  

120 1.6464E-3 6.2064E-3 6.3845E-3 2.6233E-2 

480 3.8567E-4 2.4712E-3 2.1656E-3 3.0703E-2 

2000 1.1980E-4 5.2036e-4 1.8580E-3 7.8485E-3 

8000 2.9723E-5 1.2946e-4 2.1791E-4 1.3841E-3 

Convergence Rate 1.9305 1.8611 1.6243 1.4148 

TABLE 2. The errors of xu  on C-type computational domain 

From Table 1-2, we can see that the method obtain almost second-order convergence to the 
numerical solutions, and more than first-order convergence to the first order derivatives.  

4. CONCLUSIONS 

In this paper, a finite point method based on directional derivatives is developed for diffusion 
equation. Spatial discretization scheme and a new method for selecting steady distribution 
neighboring point set are presented, which are simple, straightforward, and applicable to irregular 
computational domain.  
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ABSTRACT 

A three-level compact difference scheme is proposed for the heat conduction equation with 
Neumann boundary conditions. By using the discrete energy method, it shows that the new method 
is uniquely solvable, unconditionally stable and uniformly convergent with the fully accuracy of 
second-order in time and fourth-order in space. A numerical example is presented to support the 
theoretical results. 

Key Words: Heat Transfer Equation, Neumann Boundary Data, Compact Scheme, Convergence 

1. INTRODUCTION 

Compared with some low-order methods such as the well-known Crank-Nicolson scheme, high-
order compact schemes can achieve higher order accuracies with narrower grid stencils such that 
they have been considered better suited for numerical simulations, see [1-5] for related discussions. 
As noted in [3,4], most existing high-order compact schemes are constructed for the Dirichlet 
boundary-value problems but fewer schemes have been considered for the Neumann problems, 
which are much more difficult to handle than the Dirichlet problems. 

In this report, we construct a new fourth-order compact difference scheme for the heat conduction 
problem with Neumann boundary conditions. The interesting virtue of the new scheme is that it is 
fourth-order accurate in space at all grid points, both interior and boundary points. The fourth-order 
approximations at the boundary points are constructed by transferring the spatial derivatives in the 
truncation error to temporal derivatives by using the original equation and approximating the 
resulting terms. For accurate approximations of the time derivatives with second-order temporal 
accuracy, the resulting scheme involves three time levels. 

For simplicity of presentation, we consider the model problem 

 ( , ),t xxu u f x t  0 1,x  0 ,t T   (1) 
 (0, ) (0, ),xu t t  (1, ) (1, ),xu t t 0 ,t T   (2) 
 ( ,0) ( ),u x x  0 1x  . (3) 

It is to assume that the initial value ( ),x the boundary values (0, ),t (1, ),t and the source term 
( , )f x t are regular enough such that the heat equation (1) admits a smooth solution. 

For the finite difference approximation, let 1h M for a positive integer M , ix ih  (0 )i M   

and the spatial grid  0h ix i M    .Given a grid function  0h iv v i M   , denote 
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1 1
2

( ) / 2i ii
v v v 

  , 1 1

2

( ) /x i ii
v v v h 

   and 

2
1 1
2 2

( ) /x i x xi i
v v v h  

 
  . For integer K ，take 

T K  , kt k (0 )k K  , 1 2 1( ) / 2k k kt = t t   and the mesh  0kt k K    .Given 

grid function  0k k K    , denote 1 2 1( ) / 2k k k     , 1 2 1( ) /k k k
t       , 

1 1( ) / 2k k k     , 1 1( ) / (2 )k k k
tD       and 2 1 1 2( 2 ) /k k k k

t         . 

Let  0 ,0k
iu i M k K     be a grid function on h   .We consider the following three- 

level compact difference scheme for solving the model problem (1)-(3) 

 2
1 1

1 ( 10 )
12

k k k k k
t i t i t i x i iD u D u D u u F     , 1 1,i M   1 1k K   , (4) 

 
2 3

2
0 0 0 0 1 2 0 0

2( ) ( ) ( )
3 12 60

k k k k k k k
t t t tt x

h h hD u u u F
h

          , 1 1k K   , (5) 

 
2 3

2
1 2

2( ) ( ) ( )
3 12 60

k k k k k k k
t M t M t M tt M M x M M

h h hD u u u F
h

           , 1 1k K   , (6) 

 1 ( )i iu x , 0 i M  ; 0 ( )i iu x , 0 i M  , (7) 

where, 

 1 1
1 ( 10 )

12
k k k k

i i i iF f f f    , 1 1i M   ,  

 
2 3

0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( )
3 12 60

k k k k k k k
x t xx xt xxx

h h hF f f f f f f            ,  

 
2 3

( ) ( ) ( ) ( ) ( )
3 12 60

k k k k k k k
M M x M t M xx M xt M xxx M

h h hF f f f f f f            ,  

    
2

( ) ( ) ( ) ( ,0) ( ) ( ,0) ( ,0)
2xx xxxx xx tx x x f x x f x f x

          .  

By using the discrete energy method, it shows that the compact difference method (4)-(7) is 
uniquely solvable, unconditionally stable and convergent of 2 4( )O h  . The theoretical results of 
the difference scheme are described in the next section. Section 3 devotes to examining numerically 
the theoretical results in our analysis. Some comments are presented in the concluding section. 

2. STABILITY AND CONVERGENCE OF DIFFERENCE SCHEME 

For the theoretical analysis of the fourth-order compact scheme (4)-(7), denote 

 2 2
1

1
( )

2

M

i i
i

hv v v



  ,    
2

1 2
1

M

x x i
i

v h v  



  ,   
0
max i

i M
v v


 

 .  

We consider firstly the following lemma of a priori estimation. 
LEMMA 2.1. Let  k

i be the solution of the following difference system 

 2
1 1

1 ( 10 )
12

k k k k k
t i t i t i x i iD D D g         , 1 1,i M   1 1k K   , (8) 
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2

2
0 1 2 0 0

2
12

k k k k
t x t

hD g
h

       , 1 1k K   , (9) 

 
2

2
1 2

2
12

k k k k
t M x M t M M

hD g
h

       , 1 1k K   , (10) 

 1
i i  , 0

i i  , 0 i M  . (11) 
Then it holds that 

 
12 2 21 2 1 1 2

1

1 1
6 3

k
k k l

l
E E g

T T
  






     , 1 k K  ,  

where the energy norm  

      
3 2 22 21 1 2 1 2

0
1
2 12

k k k k k
x x t t M

hE              
  

, 1 k K  .  

Applying Lemma 2.1, it easy to prove the unique solvability, the unconditional stability and the 
unconditional convergence of the suggested method, as stated in the following theorems. 

THEOREM 2.2. The compact difference scheme (3)-(7) is uniquely solvable. 
THEOREM 2.3. The compact difference scheme (3) -(7) is unconditionally stability. 
THEOREM 2.4. The solution of the three-level compact difference scheme (3)-(7) is 

unconditionally convergent with the convergence order 2 4( )O h  in the maximum norm. 

3. NUMERICAL EXPERIMENTS 

In this section, an example is presented to examine the numerical stability and accuracy of the 
proposed three-level compact difference scheme. To show the effectiveness of the fourth-order 
approximations of boundary conditions of Neumann-type (list as 4-order Approx. in the tables), the 
numerical solutions are compared with those of the following fourth-order compact difference 
scheme with the one-order ( 0  ) and second-order ( 1  ) discretizations of Neumann 
boundary data (list as 1-order Approx. and 2-order Approx. respectively in the tables), 

 1 2 1 2 1 2 2 1 2
1 1

1 ( 10 )
12

k k k k
t i t i t i x iu u u u      

    1 2 1 2 1 2
1 1

1 ( 10 )
12

k k k
i i if f f  

    ,  

 1 2 1 2 1 2 1 2
0 1 2 1 2 0

2 ( )
3

k k k k
t x t x

hu u u
h


          1 2 1 2

0 1 23
k k

x
hf f
   , 1 k K  ,  

 1 2 1 2 1 2 1 2
1 2 1 2

2 ( )
3

k k k k
t M x t M M x M

hu u u
h


       

    1 2 1 2
1 23

k k
M x t M

hf f
  

  , 1 k K  ,  

 0 ( )i iu x , 0 i M  .  

We consider the heat equation 2x t
t xxu u e    with the Neumann boundary data such that it has 

solution ( , ) exp( 2 )u x t x t  .The solution errors in the maximum norm and the experimental rates 
are listed in Tables 1-2.The results of Theorems 2.3 and 2.4 are supported by observing that the new 
compact difference method is stable and convergent with the accuracy of second-order in time and 
fourth-order in space. The fourth-order compact scheme with one-order ( 0  ) boundary 
treatment is convergent with second-order spatial accuracy. The second-order approximation 
( 1  ) generates third-order accurate solutions. Compared with the lower order approximations of 
Neumann boundary data, the superiority of our discretizations is seen. 
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M        K 
1-order  Approx. 2-order  Approx. 4-order  Approx. 

error Rate error Rate error Rate 

80        80 

160       160 

320        320 

1.67e-04 

4.21e-05 

1.05e-05 

--- 

1.99 

2.00 

1.53e-04 

3.85e-05 

9.65e-06 

--- 

1.99 

2.00 

6.19e-04 

1.55e-04 

3.87e-05 

--- 

2.00 

2.00 

TABLE 1. Convergence of the solution at 1T   for the spacing h   

 

M        K 
1-order  Approx. 2-order  Approx. 4-order  Approx. 

error Rate error Rate error Rate 

80    6400 

160    25600 

320     102400 

3.22e-04 

8.07e-05 

2.02e-05 

--- 

2.00 

2.00 

1.34e-06 

1.69e-07 

2.12e-08 

--- 

2.98 

3.00 

9.61e-08 

5.99e-09 

3.33e-10 

--- 

4.00 

4.17 

TABLE 2. Convergence of the solution at 1T   for the time step 2h  . 

4. CONCLUSIONS 

Focusing on the fourth-order approximations for the Neumann boundary conditions, we develop a 
new compact difference scheme that is fourth-order accurate in space at all grid points for solving 
the one-dimensional heat problem. The unique solvability, unconditional stability and uniform 
convergence of the difference scheme are theoretically verified by the energy method. Numerical 
experiments are included to support the error analysis and to exhibit the superiority of the proposed 
method to other similar approaches. 

REFERENCES 

[1] W.Y. Liao, J.P. Zhu and A.Q.M. Khaliq, A fourth-order compact algorithm for nonlinear 
reaction-diffusion equation with Neumann boundary conditions, Numerical Methods for 
Partial Differential Equations, 22(3), 600-616, 2006. 

[2] J. Zhao, W.Z. Dai and T.C. Niu, Fourth-order compact schemes of a heat conduction problem 
with Neumann boundary conditions, Numerical Methods for Partial Differential Equations, 
23(5), 949-959, 2007. 

[3] J. Zhao, W.Z. Dai and S.Y. Zhang, Fourth-order compact schemes for solving 
multidimensional heat problems with Neumann boundary conditions, Numerical Methods for 
Partial Differential Equations, 24, 165-178, 2008. 

[4] Z.Z. Sun, On the compact difference scheme for heat equation with Neumann boundary 
conditions, Numerical Methods for Partial Differential Equations, 25, 1320-1341, 2009. 

[5] W.Z. Dai, A new accurate finite difference scheme for Neumann (insulated) boundary 
condition of heat conduction, International Journal of Thermal Sciences, 49, 571–579, 2010. 



 

 

Second International Conference on Computational Methods for Thermal Problems 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 
BOUNDARY ELEMENT METHOD FOR TRANSIENT RADIATIVE-

CONDUCTIVE COUPLED HEAT TRANSFER 
Xiao-Wei Gao 

State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of 
Technology, Dalian, 116024, P.R. China, xwgao@dlut.edu.cn 

Jing Wang 
Department of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing , 

210096, P. R. China, wangjing060730@qq.com 

 

ABSTRACT 

A boundary-only formulation for transient radiative-conductive coupled heat transfer problems is 
presented. Heat radiation and conduction are coupled together by radiative heat source, and 
nonlinear material properties and arbitrary non-linear boundary conditions can be considered. The 
Green’s function for the Laplace equation is adopted in deriving basic heat transfer integral 
equations. Domain integrals appearing in integral equations are transformed into boundary integrals 
using the radial integration method (RIM). The Newton-Raphson iteration method is applied to 
solve the nonlinear algebraic equations, in which the resulted linear set of equations is solved using 
REBSM. A numerical example is given to demonstrate the efficiency of the presented method. 

Key Words: Heat Radiation, Heat Conduction, Boundary Element Method, Radial Integration 
Method, REBSM. 

1. INTRODUCTION 

Coupled radiation and conduction heat transfer is importantly significant in applications to semi-
transparent mediums under high temperature. Some studies have been conducted [1]. Siegel [2] 
gave a detailed review of the literatures on this subject over the past 40 years. In the recent years, 
Wellele et al. [3] solved numerically the coupled radiation-conduction heat transfer problems in 
semi-transparent orthotropic materials, where both the radiation and conduction problems are 
solved using finite-volumes. Matthew et al.[4] simulated 3D transient radiation and conduction heat 
transfer inside thin glass sheets undergoing high temperature processing. Blobner et al.[5] 
developed a novel boundary-only formulation for transient temperature fields in bodies of non-
linear material properties and self-irradiating boundary conditions using the dual reciprocity method.  

The Boundary Element Method (BEM) [6] is very efficient for solving heat transfer problems. One 
of the advantages is that the boundary elements in BEM can be directly served as the heat radiative 
surface. The classical formulation of BEM for radiative heat transfer equations requires volume 
integrations [7]. Recently, a new transformation technique, called radial integration method (RIM), 
has been developed by Gao [8], which can transform any domain integrals to the boundary. In this 
paper, RIM is applied to convert domain integrals appearing in integral equations into equivalent 
boundary integrals. Two heat transfer modes are coupled by radiation heat source term, which 
forms the final nonlinear system of equations. The Newton-Raphson iteration scheme is used to 
solve the nonlinear equation set. A numerical example is provided to illustrate the accuracy and 
effectiveness of the developed technique. 

2. HEAT CONDUCTION EQUATIONS 

mailto:wangjing060730@qq.com
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The transient energy equation (governing equation) for heat conduction in participating media for 
combined conduction and radiation [9] is  

 
 

 
  0   ,Ω        ,,,










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









 t
t

tTctq
x

tTTk
x

r
V

ii

xxxx
                      (1) 

Where,  Tk  is the thermal conductivity, r
Vq  the radiative heat source,  the density of the media, 

c  the heat capacity of the medium. A weight function  yx,G  is introduced to Eq. (1) and the 
Gauss’s divergence theorem is applied to derive the following boundary-domain integral equations 
[8]: 

              
 

 
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GtTTktqGtTtTk
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V

c

xyxxyx,xxyx

xyxxxxyxyy



  (2) 

In this paper, the weight function  yx,G  is chosen as the Green’s function [8]. 

3. HEAT RADIATION EQUATIONS 

The radiative heat transfer and heat source equations can be written as: 

     
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 
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                          (4) 

where, 4Teb   is the blackbody emissive power, 4'c  for internal point and  /'c  for 
boundary point with  being the geometry angle around the boundary point, i.g., for a smooth point 

 2 . Functions, such as  yx,K  are the kernels of heat radiation which can be found in [7]. 

4. COUPLING SYSTEM OF EQUATIONS 

All domain integrals in Eqs.(2)-(4) are transformed into boundary integrals using RIM [8], resulting 
in integral equations formulated in terms of boundary integrals only. Discretizing the boundary of 
the problem into boundary elements and evaluating all integrals in Eq.(2), the following algebraic 
equation can be formed: 

             













t
TCTVqQqGkTH r

V
c                                   (5) 
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Similarly, algebraic equations from Eqs.(3) and (4) can be expressed, respectively, as 

         0 b
r

b eWqBeA                                                       (6) 

          b
r

b
r
V eWqNeMq '                                                 (7) 

After some operations on Eqs.(5) to (7) and noticing that 4Teb  , the final system of equations 
can be written as 

             













t
TCTVTQqGkTH 4                                      (8) 

where      rc qqq  ,          ABGMQQ 1
  and         ABNMM 1

 . 

Equation (8) is the final system of equations formulated in terms of the temperature T and boundary 
heat flux q. Since it is a nonlinear equation set about T, an iterative solution scheme is needed to 
solve unknown temperatures and fluxes by imposing initial and boundary conditions. In this paper, 
the Newton-Raphson iterative scheme is adopted to solve this system.  

For transient problems, the time-marching technique is used to compute the time derivative term 
with a finite difference method. 

5. NUMERICAL EXAMPLE  

A computer code, called RIBEM, has been developed using formulations presented in this paper. 
To verify the correctness of the presented formulations, a numerical example is presented in the 
paper. The example considered is a 1m1m  plate (FIGURE 1). The left and right sides are 
insulated, the top wall is imposed with temperature 100K, while the bottom wall exchanges energy 
with environment with convection coefficient   KmW/200 2 h  and emissivity 1 .The 
parameters used are       KmW/01015 2  T.Tk ,  KkgJ/100 c , 3kg/m100 , and 
the absorption of the medium 1a . Initial temperature is T0=100K for whole model. The 
computational model is as shown in Fig.2. Temperatures at 81 internal points are investigated. 

q=0

Tf=1000K

q=0

9.0

0.1a

10

1

x

y T=100K

 KmW/200 2 h                     
FIGURE 1. Dimensions and conditions of the plate           FIGURE 2. BEM model of the plate 

Fig.3 shows the computed temperature curves along y-direction in the left side of the plate by using 
the heat conduction only and conduction-radiation coupling together. It can be seen that the speed 
of heat transfer is faster in participate of the radiation. This is accordant with the physical analysis. 
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FIGURE 3. Temperature curves along y-direction 

6. CONCLUSIONS 

An efficient boundary-only numerical technique is presented for solving transient nonlinear 
radiative-conductive coupled heat transfer problems. The technique is capable of dealing with heat 
transfer problems with non-linear conductivity and medium radiation. The radial integration method 
is used to transform the domain integrals appearing in the derived basic boundary-domain integral 
equations into boundary integrals, which results in a pure boundary element analysis algorithm. 
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ABSTRACT 

A lattice Boltzmann model is proposed to solve elliptic equations with variable coefficient. 
Compared with the previous model, the present model is a more effective solver to the ellipse 
equation with variable coefficient, and the ellipse equation is exactly recovered to order 2( )O  . The 
relaxation time   is not fixed and is defined by the coefficient of the equation. The limited 
numerical results show that the present model is valid for ellipse equations. 

Key Words: Lattice Boltzmann model, variable coefficient elliptic equation, Chapman-Enskog 
expansion. 

1. INTRODUCTION 

The n-dimension ellipse-type equation considered in this paper can be written as 

  ( ) ( , )x F x      (1) 

where   is the gradient operator with respect to the spatial coordinate x ,  is a scalar function of 
position x , 0( ) 0x    is the coefficient dependent on position x  and function ( , )F x   is the 
source term. There are many numerical methods for the solution of equation (1), such as finite 
difference method, finite element method, boundary element method, etc. 

The lattice Boltzmann method (LBM) is a new computational tool for the study of fluid dynamics 
and physical problems with partial differential equations. It has been developed as an alternative 
method for computational fluid dynamics (CFD), see Refs. [1-3]. Recently, LBM has been applied 
to simulate linear and nonlinear partial differential equations, see Refs. [4-8] and reference therein. 
Especially, Ref. [6] presented a better lattice Boltzmann model solver for the Poisson equation and 
the transient term derived by previous models [5] is already eliminated. 

In this paper, simulated by the idea in [6], a lattice BGK model is presented to solve the elliptic 
equation with variable coefficient. Compared with the model of Ref. [6], this present model is 
capable of dealing with elliptic equations with variable coefficient through a variable relaxation 
time determined by the coefficient of the elliptic equation. Additionally, this model can avoid the 
too large relaxation time value   by introducing a new parameter in arithmetical. 

2. LATTICE BOLTZMANN MODEL 

The present Lattice Boltzmann model is based on DnQb lattice with b velocity direction in nD 
space. The evolution equation of the distribution function in the model is described as 

 2 21( , ) ( , ) ( , ) ( , ) ( , ), 0, , 1,eq
j j j j j s jf x c t t t f x t f x t f x t Rc t F x t j b


              (2) 
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where  , 0,1, , 1jc j b   is a set of discrete velocity directions, t the time step,  the 

dimensionless relaxation time, ( , )eq
jf x t the equilibrium distribution function, sc the sound velocity, 

R a constant controlling the relaxation time , and ( , )jF x t  the distribution function for the source 
term. The Knudsen number    is assumed to be equal to the time step t  [9]. With parameter , 
the lattice Boltzmann Eq. (2) can be rewritten as 

 2 21( , ) ( , ) ( , ) ( , ) ( , ), 0, , 1.eq
j j j j j s jf x c t f x t f x t f x t Rc F x t j b  


           (3) 

Using the Taylor expansion to Eq. (3), yields 

 
2

3

1
( , ) ( , ) ( , ) ( ).

!

nn

j j j j j
n

f x c t f x t c f x t O
n t x


  


  
      

  
  (4) 

With the assumption of small Knudsen number  , applying the Chapman-Enskog expansion to 
( , )jf x t  and t  , that is  

 (1) 2 (2) 3( )eq
j j j jf f f f O      , 2 3

0 1 2 ( )t t t t O           (5) 

Substitute Eqs. (4) and (5) into Eq. (3) and retain and rearrange those terms with order   and  2 , 
and thus gives 

 (1)
0

1 ,eq
j j jD f f


   (1) 2 (2) 2

1 0 0
1 1 ( , ),
2

eq eq
t j j j j j j s jf D f D f f Rc F x t


       (6) 

where  0 0j t jD c    .  Setting 0 0,eq eq
j j j

j j jj

f f and c f      and considering Eq. 

(5), obtains 
(1) (2) 0.

j jj j

f f     Therefore, above equations yield 

 (1)1 .eq
j j j j j

j j
c f c c f



 
   

 
   (7) 

Considering Eqs. (6) and (7), obtains 

  2 (1)
0

1 : .eq eq
j j j j j j j

j j j
D f c f c c f



   
      

   
    (8) 

Summing the second equation in (6) over j  and combining Eqs. (7) and (8), yields 

   20.5 ( , ).eq
j j j s j

j j
c c f Rc F x t

 
    

 
   (9) 

Setting 2 , ( , ) ( , ) 1 ,eq
j j j s j j j

j j
c c f c I F x t F x and       one has from Eq. (9) that  

 0.5 ( , ).RF x         

Therefore, taking 0.5 ( )R x   , one recovers the Eq.(1)  to order 2( )O  . 

Remark If R is set as  
1max{ ( ) : } ,R x x


   then  
1

00.5 max{ ( ) : } 1.5x x  


    , 
which is an efficient range for lattice Boltzmann method. Specially, if ( )x is constant in , then 
the model in this paper is reduced to the one presented in Ref. [6]. 
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3. NUMERICAL EXPERIMENTS 

For the limit on the page, we only consider the following two examples: 

Example 1. ( ) xx e  ,    2 2 2( ) 2 sin cos cos sinx xF x e x x e x x          , and the 

analytical solution * sinxe x  in the internal [0,1]. 

Example 2. ( , , ) xyzx y z e  , ( , , ) (3sin( ) ( )cos( ))xyzF x y z e x y z yz xz xy x y z        , 
and the analytical solution is * sin( )x y z     on the computational region 3[0,1]  . 

In the numerical experiments, the equilibrium distribution function eq
jf  is defined as follows [6]: 

0 0( 1) ,
, 1, , .

eq

eq
j j

f
f j b

 

 

  


 
 

The distribution functions ( , )jf x t  are initialized as ( , )eq
jf x t , and   is set zero at 0t   except on 

the boundary. The non-equilibrium extrapolation scheme [11] is adopted. Additionally, the global 

relative error 
*| |

| |GRE  






 is used to test the accuracy of the present model in this paper, 

where   and *  are the numerical solution and analytical solution, respectively. Moreover, D1Q3 
and D3Q13 are applied to 1-dimension and 3-dimension problems, respectively. 

First, we verify the proposed model is a second order scheme on precision by applying the model to 
the Example 1 with knots NX= 20, 40, 50, 80, 100, 120, 150, and 200 respectively. We obtain the 
relation of GRE with lattice space, which can be described by a line. The slope of the line is about 
1.9818, which is same as the results in Ref. [6]. 

Then the given two examples are numerical solved on 100 and 100 100 100  lattice, respectively. 
The numerical results are listed in Table 1, where NS, AS and ABSerror denote the numerical 
solution, analytical solution and absolute error, respectively. For Example 1, the max absolute error 
is 1.99837e-4 on these knots. And the max absolute error on knots is 4.20666e-5 for Example 2. 
These facts imply the presented model is valid.  

Example 1 Example 2 

ix  NS AS ABSerror ( ix , iy , iz ) NS AS ABSerror 

0.1 0.34155 0.341517 3.54046e-5 (0.1,0.1,0.1) 0.295516 0.295520 4.20666e-5 

0.2 0.71790 0.717923 2.55283e-5 (0.2,0.2,0.2) 0.564632 0.564642 1.04734e-5 

0.3 1.09200 1.092059 5.87153e-5 (0.3,0.3,0.3) 0.783310 0.783327 1.69096e-5 

0.4 1.41876 1.418810 4.95998e-5 (0.4,0.4,0.4) 0.932018 0.932039 2.10860e-5 

0.5 1.64872 1.648721 1.27070e-6 (0.5,0.5,0.5) 0.997473 0.997495 2.19866e-5 

0.6 1.73302 1.732938 8.20414e-5 (0.6,0.6,0.6) 0.973829 0.973848 1.86309e-5 

0.7 1.62936 1.629160 1.99837e-4 (0.7,0.7,0.7) 0.863198 0.863209 1.13666e-5 
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0.8 1.30853 1.308140 3.89863e-4 (0.8,0.8,0.8) 0.675463 0.675463 1.80551e-7 

0.9 0.76075 0.760059 6.88839e-4 (0.9,0.9,0.9) 0.427398 0.427380 1.81198e-5 

TABLE 1. Comparison between numerical and analytical solution two examples 

Additionally, we find that the effect of parameter R  on the precision is significant. For Example 1, 
the GRE is 1.32892e-3 for 1R  , but 1.90219e-4 for the R  defined in the remark. 

4. CONCLUSIONS 

In this paper, a lattice Boltzmann model is proposed to solve variable coefficient ellipse equations. 
And the ellipse equation is exactly recovered to order 2( )O  . The relaxation time   in the present 
model is not fixed and is defined by the coefficient of the equation. Moreover,  can be controlled 

in the internal 00.5 ,1.5
max{ ( ) : }x x








 
 
 

, in which the lattice Boltzmann method is very 

efficient. Additionally, the parameter R  effects the precision and performance greatly. The limited 
numerical results show that the present model is valid for variable coefficient ellipse equations. 

Nevertheless, some important issues, such as how to choose suitable R  and how to modify the 
model for more general elliptic equations need further studies. 
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ABSTRACT 

Gases in microfluidic structures or devices are often in a non-equilibrium state. The conventional 
thermodynamic models for fluids and heat transfer break down and the Navier-Stokes-Fourier 
equations are no longer accurate or valid. In this paper, the extended thermodynamic approach is 
employed to study the heat transfer in microstructures. It is shown that the heat transfer in the non-
equilibrium state no longer obeys the Fourier gradient transport law and the 26 moment equations 
are able to predict the velocity, pressure, and temperature profiles in the early transition regime. 

Key Words: Heat Transfer, Non-equilibrium, Moment Method. 

1. INTRODUCTION 

Due to the rapid development in fabrication technology for constructing micro-electro-mechanical-
systems (MEMS), fluid flow at the micro- and nano-scale has received considerable attention. A basic 
understanding of the nature of flow and heat transfer in these devices or structures is considered essential 
for efficient design and control of MEMS. Gas flows in micro-scale devices suffer from non-
equilibrium effects when the gas molecular mean free path is the same order as the characteristic length 
of the device. The degree of non-equilibrium of a gas is generally expressed through the Knudsen 
number (Kn=/L) which is the ratio of the molecular mean free path, , to a typical dimension of the 
flow field, L. The different rarefaction regimes can be summarised according to the value of the 
Knudsen number. Most MEMS operate at the slip and early transition regime (Kn < 1). Different 
approaches have been employed by various researchers to capture and describe the non-equilibrium 
phenomena that arise due to an insufficient number of molecular collisions occurring under rarefied 
conditions. Microscopically, the Boltzmann equation provides an accurate description of a dilute gas at 
all degrees of rarefaction and describes its state through a molecular distribution function that treats the 
gas as a large number of interacting molecules, colliding and rebounding according to prescribed laws. 
However, solutions of the Boltzmann equation, either directly [1] or through the direct simulation Monte 
Carlo (DSMC) method [2], entail significant mathematical complexity and can be computationally 
expensive, particularly for low-speed, low Knudsen number flows in the slip and transition regime. Due 
to the difficulties associated with solving the Boltzmann equation, there is significant effort being made 
to construct alternative solution strategies that can provide an accurate description of a gas with Knudsen 
numbers that extend into the early transition regime, such as the lattice Boltzmann method [3]. The 
extended thermodynamic equations developed with the method of moments have been used to predict 
the hydrodynamic quantities successfully [4-6]. In this paper, the regularised 26 moment equations are 
briefly introduced. They are employed to study heat transfer between two parallel plates of different 
temperatures and flow characteristics of pressure-driven flow through a long microchannel with different 
outlet Knudsen numbers. The predicted results are compared with DSMC data [7] and LBM data [8]. It 
is shown that the extended thermodynamic model is able to capture a range of non-equilibrium 
phenomena, such as the non-uniform pressure between the plates and the existence of a normal stress 
without any velocity gradient. 
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2. EXTENDED THERMODYNAMIC APPROACH: 26 MOMENT EQUATIONS 

The Boltzmann equation is the central equation in kinetic theory, the properties of which can be 
used to guide the development of kinetic and macroscopic models for rarefied gas flow. Once the 
distribution function, f, is known, its moments with respect to  can be determined. For example, the 
density, , and the momentum, ui, can be obtained from 

 and i if d u f d       (1) 

where i and ui represent the particle and fluid velocity, respectively. It is convenient to introduce 
the intrinsic or peculiar velocity as ci=i-ui, so that the moments with respect to ci can be 
conveniently calculated. A set of N moments are then used to describe the state of the gas through 
 

1 2 1 2........ .......
N Ni i i i i ic c c f d     (2) 

Any moment can be expressed by its trace and traceless part [4]. For example, the pressure tensor 
can be separated as follows: 
 ,ij i j ij ij ij ijp c c f d p p p          (3) 

where ij is the Kronecker delta function, p = pkk/3 is the pressure, and ij = p<ij> is the deviatoric 
stress tensor. The angular brackets are used to denote the traceless part of a symmetric tensor. 
Furthermore, the thermal energy density, , is given by 

 21 3
2 2

c f d RT    . (4) 

The temperature, T, is related to the pressure and density by the ideal gas law, p=RT where R is the 
gas constant. The heat flux vector is 
 2 2i iq c c f d   . (5) 

The molecular distribution function, f, can be reconstructed from the values of its moments. Grad 
expressed f in Hermite polynomials as: 

    

0

1lim
!

N n n
M A AN n

f f a H
n 

   (6) 

where  n
AH  is  the Hermite polynomials and  n

Aa  the coefficients, which are linear combinations of 
the moments. fM is the Maxwellian distribution function.  

To accurately describe the state of a gas an infinite number of moments (N  ) is required to 
reconstruct the distribution function. However, for gases not too far from equilibrium, a finite 
number of moments should provide an adequate approximation. When N=4, a 26 moment system is 
constructed. Instead of using of the gradient transport assumption for heat flux and stress to close 
the conservation equations, their governing equations as well as higher moment equations are 
derived from the Boltzmann equation. The details of the extended thermodynamic model can be 
found in Ref. [4], which is able to capture many non-equilibrium phenomena, such as Knudsen 
layer, Knudsen minimum.  In the present study, it is employed to predict the thermal characteristics 
between two parallel plates with different temperatures and the flow characteristics of pressure-
driven flow through a long microchannel with different outlet Knudsen numbers. 

3. RESULTS 

The heat transfer between two parallel planar plates with different temperatures is studied with the 
extended thermodynamic model. To be consistent with the DSMC simulation setup [7], the lower 
wall with a temperature of 263K sits at y=0 and the other wall with a temperature of 283K at y=L. 
All the derivatives in the x-direction parallel to the walls are zero.  Both walls are stationary. The 
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Knudsen number is calculated on a reference temperature of 273K and different reference pressures, 
as given in Ref. [7]. The predicted temperature profiles at different Knudsen numbers are shown in 
figure 1 in comparison with the DSMC data [7]. When Kn=0.0475 in the slip regime, both NSF and 
extended thermodynamic models can predict the temperature between the plates accurately, except 
that the NSF equations cannot capture the thermal Knudsen layer close the walls as shown in figure 
1(a). As the Knudsen number increases, the NSF equations with the temperature jump condition 
overpredict the temperature jump significantly while the 26 moment equations are in good 
agreement with the DSMC data, as shown in figures 1(b) and (c). When Kn is greater than 1, both 
macroscopic models fail to predict the temperature profile. 
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FIGURE 1. Predicted temperature profile between two parallel plates with different temperatures at 
different values of Knudsen numbers. DSMC data are digitised from Ref. [7] 
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FIGURE 2. Characteristics of the non-equilibrium heat transfer between the parallel plates with 

different temperatures. (a) Normal heat flux; (b) Pressure; (c) Normal stresses 

The normal heat flux, qy, between the two plates is a constant as shown in figure 2(a). However the 
NSF equations underpredict the value of heat flux as the value of the Knudsen number increases. 
The NSF equations predict a constant pressure distribution between the two plates. However, the 26 
moment equations show that the pressure close to the hot wall is higher than that close to the cold 
wall, as demonstrated in figure 2(b). More interestingly, the normal stresses, xx and yy are not 
equal to zero without any velocity gradient and the NSF equations completely fail to capture this 
non-equilibrium effect as indicated in figure 2(c). 

The gas flows through a long microchannel with different Knudsen numbers at the outlet are also 
studied with the extended thermodynamic model. The walls with a temperature of 273K sit at y=0 
and y=L separately. The height of the channel, L, is 1μm and the ratio of the channel length to 
height keeps at 100. Pressure ratio of the inlet to outlet is 2.0. Knudsen number is calculated on the 
temperature of 273K and the pressure at the outlet. The predicted velocity and pressure profiles at 
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different Knudsen numbers are shown in figure 3 in comparison with the DSMC and LBM data 
given in Ref. [8]. The results from 26 moment equations are in good agreement with DSMC and 
LBM data. Deviation of pressure distribution from a linear pressure can also be captured by the 
extended thermodynamic model. 
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FIGURE 3. Streamwise velocity at the outlet and pressure deviation of pressure-driven flow through 
a long microchannel when Kn=0.194 

4. CONCLUSIONS 

The 26 moment equations are employed to study the temperature distribution at different Knudsen 
numbers between two parallel planar plates with different temperatures, and the flow characteristics 
of pressure-driven flow through a long microchannel with different outlet Knudsen numbers. It is found 
that the extended thermodynamic approach can predict heat transfer and the deviation of pressure 
distribution from a linear pressure in the non-equilibrium state in the early transition regime. The 
results are fairly accurate in comparison with the DSMC data with substantially low computational 
cost. 
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ABSTRACT 

In this paper, the characteristics of a two-dimensional Rayleigh-Taylor instability in incompressible 
and miscible flows with variable Prandtl numbers are studied numerically by the lattice Boltzmann 
method (LBM). Since previous works study the Rayleigh-Taylor instability with constant Prandtl 
number with emphasis on the interfacial dynamics, we use double distribution function LBM model 
to investigate the effects of variable Prandtl numbers on mixing in both absolute time and 
dimensionless time. The numerical results reveal that the mixing-zone grows differently with 
various Prandtl numbers in absolute time, but Prandtl numbers do not affect mixing growth in 
dimensionless time. 

Key Words: Lattice Boltzmann method, miscible, Rayleigh-Taylor instability. 

1. INTRODUCTION 

Rayleigh-Taylor instability occurs as a heavier fluid is put on a lighter one. The small disturbance at 
the interface will increase and develop into turbulence finally. Numerical simulation have been 
shown to be a powerful tool for analyzing the dynamics of Rayleigh-Taylor instability, which can 
provide detailed information which is difficult to obtain in experiments. As an effective and stable 
approach, the lattice Boltzmann equation (LBE) method has some advantages in simulating such 
complicated phenomena. The LBE has been used to study the Rayleigh-Taylor instability of 
immiscible fluids, with emphasis on the interfacial dynamics. In this paper we investigate the 
effects of variable Prandtl numbers on mixing in both absolute time and dimensionless time. The 
numerical results reveal the mixing-zone grows differently with various Prandtl numbers in absolute 
time, but Prandtl numbers do not affect mixing growth in dimensionless time. 

2. PROBLEM DESCRIPTION AND THE CONTROL EQUATIONS 

In this study, we consider a layer of heavy fluid placed on top of another layer of light fluid in a 
gravitational field with gravity pointing downward in a two-dimensional cavity. The fluids are 
supposed to be incompressible and miscible. Periodic boundary condition is applied in the 
horizontal direction, while the temperatures at the top and bottom plates are fixed at T1 and T2 (T1 < 
T2), respectively. The initial interface to be at height y = 0, the cavity extending up to y = Ly/2 
above and y = Ly/2 below as shown in Figure 1. In the two half volumes we then fix two different 
temperature homogeneous fluids, with the corresponding density 

 i 0 i 0 = [1- (T -T )], i = 1, 2.    (1) 

where T0 is the average fluid density. 

The control equations for the fluids read 

 =0u ,   (2) 
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0( ) ( )P

t
T T 





     uu gu u ,  (3)

 2·T T T
t

D  





u ,  (4) 

where u = (u, v) is the velocity vector, P is the pressure, β is the thermal expansion coefficient and 
T0 is the average fluid temperature. A is the Atwood number, A = (ρ1-ρ2)/(ρ1+ρ2).Pr is Prandl 
number, Pr = ν/D, Ra is Rayleigh number, Ra = gβL3(T2-T1)/νD, where L is the width of the domain, 
ν is kinematic viscosity and D is the thermal diffusivity.  

 

FIGURE 1. Fluids configuration with a heavier fluid of (ρ1,T1) placed on top of a lighter one of 
(ρ2,T2), ρ1 > ρ2 and T1 < T2. 

3. Lattice Boltzmann Model 

DDF-LBE model uses two distribution functions to describe the evolution of the temperature and 
velocity field respectively. As fluids are supposed to be incompressible, all fluid properties can be 
considered as constant except the body force term so that the Boussinesq approximation is adopted.  

In order to solve the incompressible flow equations, Guo et al. construct the following D2Q9 DDF-
LBE model [1]  

 ( )

1

1( , ) ( , ) ( , ) ( , )eq
i i t t i i i t if t f t f t f t F  


       x c x x x ,  0,1, ,8i   . (5)

 ( )

2

1( , ) ( , ) ( , ) ( , )eq
i i t t i i ig t g t g t g t 


      x c x x x ,  1,2,3,4i  .  (6) 

where fi(x, t) and gi(x, t) are density and temperature distribution functions with velocity ci at 
position x and time t, respectively. τ1 and τ2 are the dimensionless relaxation times. feq

i (x, t) and geq
i 

(x, t) are the equilibrium distribution functions corresponding to fi(x, t) and gi(x, t), which are  
defined as 
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where the parameters of ( )eq
if  are set as 

 
2 2

2 4 2
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us
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c u c u· ·u ,  (9) 

with the weight coefficients  0 1-4 5-8 = 4/9,  = 1/9,  = 1/36.   The parameters σ, λ, and γ are 
satisfied with the following conditions 

     ,   12
2

   .  (10) 

The fluid macroscopic velocity, pressure and temperature are defined as follows: 
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1
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cP f s
 

 
  

 
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the force item Fi is given by 

 02

· ( ), 2,4,
2

0, other.

i

i
T T i

F c



  

 



c g
  (12) 

Obviously, 0i
i

F  , 0( )i i
i

F T T    gc F , 0i i i
i

F c c . The kinematic viscosity ν and the 

thermal diffusivity D are calculated by 

 2
1

1
2s tc  

 
  

 
,  2

2
1
2 tD c  

 
  

 
.  (13) 

Hence, the corresponding Prandtl number is  Pr = 2
3 (2τ 1-1)/( 2τ 2-1).  

4. RESULTS 

We use the above model to simulate Rayleigh-Taylor instability with variable Prandtl numbers. The 
parameters are set as τ1 = 1.8, Ra = 6.4 × 107, the dimensionless temperature of T1 and T2 are set to 
be -0.5 and 0.5. In the simulations, the system size is Nx×Ny = 256×1024.  

To measure the growth of the mixing zone, the temperature is averaged in the horizontal direction, [2] 

 1( ) ( , , )
xL

x

T y T x y t dx
L

  . (14) 

The penetration length of the spikes and bubbles hs(t) and hb(t) are defined as the y-distances for 

which 1

2 1

( )
1

T y T
T T




 


and 1

2 1

( )T y T
T T







, respectively, with ε = 0.05. 

As shown in Figure 2, the variation of Pr number has a significant influence on the mixing growth 
in absolute time. When Pr number is changed from 0.71 to 7.1, the speeds of mixing growth are 
different. As Pr number increases, the mixing growth slows down.  
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FIGURE 2. Penetration penetration length of the spikes and bubbles hs(t) and hb(t) vs. t2 in absolute time. 

As shown in Figure 3, the variation of Pr number nearly has no impact on the mixing growth in 
dimensionless time with a normalization time scale chosen as 

 L
Ag

  . (15) 

We can see that with Pr number increasing from 0.71 to 7.1, the mixing-zone growths are almost 
the same. Because with variable Pr numbers, the normalized time steps are different although the 
time steps of each Pr number are the same. It can be deduced that Pr number only effects the 
absolute time of mixing-zone growth. When Pr number increases, it cost more time to develop the 
mixing-zone of the fluids, and the mixing processes are the same in dimensionless time. 

 

FIGURE 3. Penetration penetration length of the spikes and bubbles hs(t) and hb(t) in dimensionless time. 

5. CONCLUSIONS 

In this paper, we investigate the characteristics of a two-dimensional Rayleigh-Taylor instability in 
incompressible and miscible flows with variable Prandtl numbers. The numerical results reveal 
some features of Rayleigh-Taylor instability. The mixing-zone grows differently with various 
Prandtl numbers in absolute time, but the mixing processes are the same in dimensionless time. 
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ABSTRACT 

The concept of a fractional diffusion equation is introduced. Two novel numerical solutions are 
introduced. The first is based on a weighting of non-local finite difference approximation of the flux. 
The other is based on a Monte-Carlo simulation with step sizes selected from an appropriate   
stable Lèvy distribution. The performance of these two schems are comapred on a steady-state 
problem. Close agreement between the schemes and with available analytical solutions is observed.  

Key Words: Fractional Diffusion, Finite Difference Scheme, Monte Carlo Scheme  

1. INTRODUCTION 

In recent times there has been a growing interest in modeling transport systems that exhibit non-
locality. In a heat transfer setting such considerations will become important when the maximum 
length scale of the heterogeneities in the system is of the order of the domain size. If the sizes of the 
heterogeneities are power-law distributed a formal treatment of this type of problem leads to the 
definition of flux at a particular point in terms of a combination of convolution integrals      
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where k  is thermal conductivity (assumed constant here), the problem domain is ],[ bax , and  
11     is a parameter that biases the non-locality between the upstream and downstream 

directions.  If the convolution kernel function is set as a power law, with the form 

 10,)(   zz  (2) 

the expression in equation (1) can be associated with fractional order Caputo fractional derivatives  
to the left and right [1], i.e., 
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In these expressions the term 10   , which gives the fractional order of the derivative, is an 
expression of the locality in the problem; note when 1  locality is expressed and the flux in 
equation (3) takes the conventional form xT  / . In this way a non-local (fractional) version of 
the Fourier heat conduction equation, in a two-dimensional domain, can be established by using the 
general flux definitions of the form in equation (3) in the heat balance 
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Recently building on and from previous numerical schemes [2-5], Voller, Paola and Zielinski [6] 
have developed a finite-difference based scheme for (4) referred to as the Control Volume Weight 
Flux Scheme (CVWFS). The object of the current work is to outline the key ingredients in the 
CVWFS and establish its validity by comparing CVWFS results for steady-state heat conduction 
problems with results from an alternative Monte-Carlo (random-walk) method. 

2. THE CVWFS 

The key features in the CVWFS scheme can best be observed by considering the finite difference 
solution of a steady-state one-dimensional fractional heat condition equation  
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with boundary conditions 0)0(,1)0(  TT . Recognize that once an effective finite difference 
scheme is developed for (5) it can be readily adapted—through using conventional finite difference 
approaches—for the more general solution of the two-dimensional problem in (4). 

The CVWFS solution of (5) is constructed on a grid of 1n  equally spaced node points.  At internal 
node  11  nI  the discrete form of (5) is written as 
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The various fractional derivatives in (6) are evaluated in terms of the following weighted sums of 
the approximated gradients at neighboring points   
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where, following the work in [6], the weights are given by 

 xxjW j   ]))[(1(  with 1))1(1(0
1
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

  (8) 

where )(x  is the gamma function. This choice of weights is made to ensure that (i) they sum to 
unity, and (ii) recover locality as 1 , i.e., a flux expressed by local quantities   













 


x

TT
dx

Td II

Iin

1




. Note also that the sum upper limits in (7) differ by one between the ―in‖ 

and ―out‖ components, a devise that ensures that the resulting coefficient matrix (which in general 
will be non-sparse) will be diagonally dominant; a device that is similar in nature to the one-shift 
Grünwald weight schemes [2-4].  Further recognize that the summations are truncated, thereby 
avoiding the calling on nodes beyond the domain. Finally note that the fixed value conditions for 
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equation (5) are readily incorporated in equation (7). If fixed flux conditions are required then an 
iterative procedure can be used to set the boundary temperature so that the expressions in (7) 
(applied at the boundary nodes) recover the correct flux value.  Solution of the resulting finite 
difference equation can be accomplished through a false time step iterative approach, see [6]. 

3. RESULTS 

Various CVWFS results for a range of choices of bias  and locality   values are shown, as broken 
lines, in Figure 1. Also shown in this figure, as a continuous line, is the analytical solution for the 
case  1,3.   , viz.,  xT 1 , and as symbols results from an alternative Monte-Carlo (MC) 
solution; this latter solution following similar lines to a standard heat condition MC scheme. Here, 
however, random walk step sizes in the MC scheme are chosen from an appropriate   stable Lèvy 
distribution; a pdf that can exhibit thick-power law tails and can also be directly associated with the 
Caputo derivatives in equation (3).   There are two observations 

(1) The non-local behavior in the solution is readily observed by the wide range of departures from 
the straight line   ( xT 1 ) local (integer) solution of (5). 

(2) The proposed CVWFS produces excellent agreement with the available analytical and 
alternative MC solutions. 

Further work will be aimed at demonstrating and validating extensions of the CVWFS to multi-
dimensional and transient problems including more specialized heat transfer problems, e.g., 
fractional Stefan problems [7]. 
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FIGURE 1. Results for the CVWFS and Monte-Carlo Scheme for various values of bias and non-
locality 
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ABSTRACT 

GPGPU has drawn much attention on accelerating non-graphic applications. The simulation by 
D3Q19 model of Lattice Boltzmann method was executed successfully on multi-node GPU cluster 
by using CUDA programming and MPI library. Comparison and analysis were made among the 
parallel results by 1D, 2D and 3D domain decompositions. With             mesh system and 
96 GPUs, the performance by 3D decomposition is about 3~4 times higher than that of 1D 
decomposition. In order to hide the communication time, we introduced the overlapping technique 
between computation and communication. Using 8-96 GPUs, the performances increase by a factor 
about 1.1~1.3 with overlapping mode. As large-scaled computation of a flow around a sphere at 
Re=13000 was carried on successfully using mesh system                 and 100 GPUs. As 
a result, 6.0 hours were used for processing 100,000 time steps. Under this condition, the 
computational time (2.79 hours) and data communication time (3.06 hours) are almost same.  

Key Words: GPGPU, Lattice Boltzmann method, Computation, Communication. 

1. INTRODUCTION 

Recently, the use of GPU (Graphical Processing Unit) to accelerate non-graphic computations has 
drawn much attention. GPU has been further used for general purpose with the release of CUDA 
(Compute Unified Device Architecture) by NVIDIA[1]. However, there are few large-scaled CFD 
applications for engineering purpose, which requires spare memory access and has relatively less 
arithmetic operations than the memory access. In computational fluid dynamics (CFD), Lattice 
Boltzmann method (LBM) is widely used currently as an alternative numerical scheme for 
simulating fluid flows governed by the Navier-Stokes equations[2]. Since GPU has many 
computational units and the weak correlations among adjacent computational points in solving the 
LB equation well match the data-parallel SIMT (Single-Instruction Multiple-Thread) characteristic 
of GPU, it is expected to obtain high efficiency of GPU on the LBM solver. 

2. MAIN BODY 

The completely discretized form of Boltzmann equation with BGK model is  

  (           )    (   )   
 

 
[  (   )    

  (   )]  ;                       

It is usually solved with its standard form by assuming      according to the following two steps. 

Collision step:         ̅(   )    (   )  
 

 
[  (   )    

  (   )]   ; 

Streaming step:       (        )    ̅(   )  .    

Figure 1 shows the architecture of CUDA-ready GPU. On GPU chip, there are many processors 
named multiprocessor (MP), each of them contains 8 streaming processor (SP) cores. CUDA  
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                                          FIGURE 1. The architecture of CUDA-ready GPU 

extends C by allowing the programmer to define C functions, called kernels, which run on 
GPU. When the kernels are called, they are executed N times in parallel by N different 
CUDA threads. The threads of a thread block execute concurrently on one MP and the MP 
employs the architecture of SIMT to map each thread on one SP. Each thread is executed on SP 
independently. On the other hand, for LBM, the dominant equation for the collision step is purely 
local, and the streaming step is a uniform data shifting and requires little computational effort, 
which makes LBM straightforward for parallel computation. In LBM, the two steps are solved in a 
successive and repeating way, the order for processing them is not important. To use the GPU on-
chip memory (register) efficiently, we set two kernels for the 3D-LBM solvers as follows. 

__global__ void  stream_collide (…);   

__global__ void  boundary (…);   

dim3 block (thread_x, thread_y, thread_z);         

dim3 grid (nx/block.x, ny/block.y,1);   

stream_collide <<< grid, block >>> (…);        

boundary <<< grid, block >>> (…);   

With LBM D3Q19 model, we made a computation of lid-driven cavity flow with          
lattice nodes using a single GPU (NVIDIA GeForce GTX280). The performance of 270 MLUPS 
and 87 speedup over CPU (Xeon E5420 (2.5GHz)) computation were obtained. Here, it should be 
declared that for all the computations in the present work, the single-precision floating-point 
variables were used.  

The present multi-node GPU computations were performed on Tsubame, the HPC of Tokyo 
Institute of Technology. GPUs cannot control the data transfer between themselves, the data 
communication process should be realized via CPUs. First, the data are copied from GPU to CPU 
by CUDA API cudaMemcpy(…, cudaMemcpyDeviceToHost). Then the data are exchanged 
between corresponding CPUs using parallel tool like MPI (Message Passing Interface) et al. Finally, 
the exchanged data are copied from CPU to GPU by cudaMemcpy(…, cudaMemcpyHostToDevice).  

3. RESULTS 

Figure 2 shows the performance of LBM solver by 1D, 2D and 3D decompositions for the mesh 
systems of            . The ideal line is drawn based on the data of 3D decomposition. The 
thread number we used is 96, 1 and 2 in x, y, and z directions respectively, totally 192 threads. The 
computation is cavity lid driven flow at Re=1000.  

Video Memory

GPU chip

Multiprocessor

Scalar processor
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FIGURE 2. Performance of LBM solver by 1D, 2D and 3D decompositions  
for the mesh systems              

It can be seen from Fig.2, using 1D decomposition, the performance does not increase when the 
number of GPUs is larger than 32 and even decreases slightly when the number of GPUs equals to 
96. That means the parallel efficiency drops greatly with the increase in GPU number for 1D 
decomposition. For 2D and 3D decompositions, the performances increase all along till 96 GPUs. 
This is because the amount of data for communication does not change for 1D decomposition with 
the increase in GPU number, but it decreases for 2D and 3D decompositions. However, the 
computational load decreases with GPU number in spite of the domain decomposition way.  

For multi-GPU computation, decreasing data communication time is the key point to enhance 
parallel efficiency. As for above computations, GPUs are idle when data transfer is being done. If 
the two processes can be done simultaneously, the communicational time is hidden. CUDA 
provides an overlapping mode to make it possible simultaneously executing a kernel and copying 
data between Host and Device. In our computation, using 8-96 GPUs, the performances increase by 
a factor about 1.1~1.3 with overlapping mode. 

Finally, a 3D large-scaled computation to simulate the air flow in an urban city was performed 
using multi-node cluster: Tsubame 2 in Tokyo Institute of Technology. Tsubame 2 includes 1408 
compute nodes are all equipped with three NVIDIA Tesla M2050 GPU accelerators, each of which 
consists of 448 small power-efficient processing cores with 3GB of high-bandwidth GDDR5 
memory. The simulation was done at Re=10000 using mesh system               with 288 
GPUs. The buildings are simulated by 47 rectangular blocks. Using 3D domain decomposition, the 
corresponding data size for communication for one GPU is 16.4 Mb. Figure 3 shows the iso-
surfaces of second invariant of velocity gradient tensor behind the buildings at time step = 20000. 
Large amount of vortex yields in disorder at such a high Re. As a result, 1965s was consumed for 
the computation of 20,000 time steps, in which the computational time is 1383s and the data 
communicational time is 582s. The achieved performance is 122 TFLOPS.    
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FIGURE 3. Iso-surface of second invariant of velocity gradient tensor at Re=10000 using      
         mesh system and 288 GPUs  

4. CONCLUSIONS 

Lattice Boltzmann method is very suitable for parallel computation due to the local property of the 
dominant equations. The drawback of multi-GPU computation is GPU cannot control the data 
transfer between them, the data communication must be via CPUs, which makes data 
communication quite time-consuming. When GPU number is large, 3D decomposition can 
decreases the data size for communication greatly and obtain higher performance than 1D and 2D 
ones. Besides, the GPU performance can be extracted by increasing the computational load. Multi-
GPU computation is more suitable for very large-scaled computation.  
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ABSTRACT 

An optimization model which considers a novel thermal performance index as the objective 
function is proposed for minimizing the highest temperature in this paper. Firstly, the performance 
of the conventional heat conduction optimization model, with the dissipation of heat transport 
potential capacity as the objective function, is evaluated by a one-dimensional heat conduction 
problem in a planar plate exchanger. Then, a new thermal performance index, named the geometric 
average temperature, is introduced. The new heat conduction optimization model, with the 
geometric average temperature as the objective function, is developed and the corresponding finite 
element formula is presented. The results show that the geometric average temperature is an ideal 
thermal performance index and the solution of the new model is close to the theoretical optimal 
solution. 

Key Words: Optimization; Heat Conduction Structure; Dissipation of Heat Transport Potential 
Capacity; Geometric Average Temperature; Planar Plate Exchanger. 

1. INTRODUCTION 

Statistical data show that the failure of real devices with a fraction of 55% is caused by the high 
temperature and this fraction increases exponentially with increasing temperature. Thus, the highest 
temperature is a primary factor that induces the failure of practical cooling structure and should be 
well controlled. In practice, it is natural to define the highest temperature as an objective function of 
the optimization model. However, the location of the highest temperature usually changes with the 
change of material distribution in the optimization process and is a discontinuous function of design 
variables, which may introduce numerical difficulties in optimization. Therefore, instead of a 
directing optimization of the highest temperature, it is more convenient to define another proper 
thermal performance index as the objective function in an optimization model to accomplish 
indirectly the goal of minimizing the highest temperature. 

In the optimization model of heat conduction structure, the objective function can be selected as 

1( ) ( ( ) ( ))d
2

f
Ω

T= − ∇∫X q X X Ω  (1) 

where X is the design variable used to describe the distribution of material, q(X) is the flux density 
and is the temperature gradient. Using the finite element formulation, Eq. (1) is defined as 
the dissipation of heat transport potential capacity (DHTPC), Using the DHTPC (or the heat 
dissipation efficiency) as a thermal performance index, some good design results have been 
obtained. However, this index can only tell us the heat dissipative capability rather than the highest 
temperature. How much difference between DHTPC and the present design goal, that is, the control 
of the highest temperature? Is there any better thermal performance index? Answers to these 
questions are the motivation of this study. 

( )T∇ X
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2. MAIN BODY 

To evaluate the quality of two commonly used models--Minimization of the highest temperature 
and Minimization of the highest temperature, a one-dimensional heat conduction problem for a 
planar plate is presented, which can be solved analytically. 

2.1 Problem description 

A rectangular planar plate exchanger, with length l, width W (W>>l) and thickness t, is embedded 
in the heater. The heat generated by heater flows into the exchanger uniformly. The heat flowing 
into the exchanger is q per unit time and area. Only one side along the width direction of 
exchanger contacts with a thermostat with a constant temperature T

′′
0 and others are adiabatic. This 

problem can be described as a planar heat conduction model with uniform heat source, as shown in 
Fig. 1. Furthermore, this model can be simplified into a one-dimensional heat transfer problem 
because the thickness t and the internal heat source q′′  do not change along the width direction. The 
goal is to obtain the optimal heat conduction performance by designing the thickness t along the 
length direction of exchanger. 

 
FIGURE 1. A theoretical model of a planar plate exchanger. 

2.2 Comparisons of two different optimization models 

The dimensionless thermal conductivity fields and the corresponding dimensionless temperature 
distributions from the two different optimization models are shown in Fig. 2. It can be found that 
the temperature distribution from the model with an objective function of the DHTPC has an 
obvious reduction in the internal exchanger when compared with the temperature field from the 
model with a uniform thermal conductivity field. However, these two models give the same highest 
temperature. In addition, when compared with the model with an objective function of the highest 
temperature, large differences in thermal conductivity field can be found and the highest 
temperature increases by 12.5%, which indicates that the optimization model with an objective 
function of the DHTPC sometimes cannot fulfill the present design goal. Thus, it is necessary to 
propose new thermal performance indexes for the optimization model. 

A new thermal performance index called the geometric average temperature  is proposed, 
which can be expressed as 

geoavT

l

0T o y
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W

均匀热源 

( )t x

 



 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

1/

geoav
1 ( ( )) d ) ,

n

nT T
Ω

⎛ ⎞
x= ∈Ω⎜ ⎟Ω⎝ ⎠

∫ x x  (2) 

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

x  

FIGURE 2. Comparisons of thermal conductivity fields and temperature distributions from different 
optimization models. av: the uniform conductivity field; dis: the dissipation of heat transport 

potential capacity; Tmax: the highest temperature. 

Where Ω  denotes the area (or volume) over the design region. Theoretically, the geometric 

average temperature is close to the highest temperature when n is infinitely large, i.e. . 
Thus, the geometric average temperature is an appropriate approximation of the highest temperature. 

geoav max 
n

T T
→∞

→

3. RESULTS 

The obtained thermal conductivity field (material distribution) and the corresponding temperature 
distribution are shown in Fig. 3. To facilitate comparisons, the solutions of the optimization models 
with the DHPC and the highest temperature as objective functions are also shown in Fig. 3. 

4. CONCLUSIONS 

In this paper, we have discussed how to minimize the highest temperature of a heat conduction 
structure by designing the material distribution with a specified material volume (conductivity 
ability). The large error sometimes occurs between the results by the usual optimization model with 
an objective function of the DHTPC and the theoretical optimal design. A geometric average 
temperature has been proposed, which is a better thermal performance index as the objective 
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function. The solution of the new model with the geometric average temperature as the objective 
function is close to the theoretical optimal solution. 

 

 
FIGURE 3. The solutions of the optimization model based on the geometric average temperature 

with different power indexes. Results from other models are also shown for comparison. 
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ABSTRACT 

In this paper, alternative formulations are proposed to deal with topology optimization of thermo-
elastic problems. The basic mathematical formulations of the thermo-elastic problems are presented 
and the classical 3-bar problem is used to show the difference between the elastic strain energy and 
the compliance. Then different topology optimization formulations are used to show the importance 
to distinguish the strain energy and the mean compliance in the formulations. 

Key Words: topology optimization, thermo-elastic, strain energy. 

1. INTRODUCTION 

Topology optimization is now recognized as an advanced methodology for the layout design of 
lightweight structures. The traditional way is to formulate the problem as a compliance-oriented 
problem subjected to volume constraint because the structural compliance is commonly known to 
be a global measure reflecting the stiffness of the considered structure only bearing mechanical 
loads. 

However, in the simultaneous presence of mechanical and thermal loads, the validity of the current 
formulation is doubtful. From illustrative examples of closed-form solutions, it can theoretically be 
seen that a meaningless solution with complete void over the design domain will produce a 
minimum compliance design if only thermal load is involved. The basic fact is that the thermal load 
related to temperature effect that causes thermal stress are design-dependent and will vary with the 
material layout unlike mechanical loads.  

In this paper, alternative formulations are addressed to deal with this kind of problem. Physically, 
the designable domain is interpreted as an elastic support whose topology optimization can be 
carried out for different aims, e.g., reductions of thermal stress, strain energy or compliance to fulfil 
practical design needs. Comparisons are made among different solutions to show the effects of 
these formulations. 

2. MATHEMATICAL FORMULATIONS 

To have a clear idea, it is necessary to reminder some basic mathematical formulations of the 
thermo-elastic problems. The elastic strain energy is expressed as 

1 1 1
2 2 2( ) ( )

T T T T
th th th th thD dV D dV D dV D dV                     (1) 

The total potential energy of discrete form is expressed as 

1 1
2 2

T T T T T
m t th th mU F U KU U F D dV U F         (2) 
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By applying the variational principle, the stationary condition of 0
U





 results in the well-known 

finite element equation 

m tKU F + F       (3) 

The mean compliance of the structure is defined as  
1 1 11 1 1

2 2 2( )T T T T
m t m m t t t mC F F U F K F F K F F K F           (4) 

It can easily be proved that the strain energy consists of two independent parts contributed from the 
mechanical and thermal loads, respectively. 

m t        (5) 

11
2= T

m m mF K F  ,   11 1
2 2= T T

t t t th thF K F D dV        (6) 

Therefore, the strain energy is different from the mean compliance. Notice that the subscripts m and 
t denote the mechanical and thermal parts in all above expressions. 

To clarify the notations, consider a 3-bar problem loaded by a uniform temperature and vertical load 
as shown in Fig. 1.  

                    

FIGURE 1. Three-bar problem                                FIGURE 2. Beam problem 

It follows that  
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


   (7) 

Clearly, both the mean compliance and strain energy are not monotonous functions of x1 and x2 
when the thermal load related to ΔT exists. The mean compliance is equal to the strain energy when 
the thermal load is omitted. 

3. FORMULATIONS OF TOPOLOGY OPTIMIZATION PROBLEMS 

For this kind of problem, different formulations can be used depending upon the strength, stiffness 
or compliance requirements of the structure as well as the loading cases. It is important to 
distinguish the strain energy and the mean compliance in the formulation. In certain cases, it is also 
important to distinguish different parts involved in the strain energy and compliance contributed 
from the mechanical and thermal loads. 
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For example, if the compliance or the strain energy is used as the objective function in the following 
formulation, respectively subjected to the volume constraint, the optimal solution may be 
completely different. 

,Min C
V V




      (8) 

4. NUMERICAL RESULTS OF TOPOLOGY OPTIMIZATION OF A 2D PROBLEM 

Consider a 2D rectangular domain with the top layer loaded by a uniform pressure and temperature 
distribution as shown in Fig. 2. This problem is similar to a typical TPS design problem. The top 
layer is non-designable while the bottom region will be designed in configuration to act as an elastic 
support. Suppose that E= En =2.0×105GPa, α=αn=1.0×10-4, H=2m, Hn=0.8m, L=3, T=100℃, Tn=0℃, 
P=5N/m. Different topology optimization formulations and corresponding design results are shown 
in Fig. 3. In all the formulations, σi denotes the equivalent Von-mises stress of element i of the top 
layer, vf denotes the volume fraction. In the first formulation, the compliance is used as constraint, so 
both the vertical and horizontal deformations are limited, which will result in the increasing of 
thermal stress. In the second formulation, only the vertical displacement is controlled by the 
constraint. Therefore, the maximum stress of the second formulation will be lower than that in the 
first formulation. 

Optimization model Material layout of topology optimization result 
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FIGURE 3. Different formulations and corresponding design results 
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5. CONCLUSIONS 

In this paper, topology optimization of structures under thermo-elastic load is investigated. Variant 
optimization formulations are mainly addressed to highlight their differences. A compromise way is 
to find the solution that matches the effect between thermal load and mechanical load. 
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ABSTRACT 

The optimization formulations are studied for the concurrent optimization of the load carrying 
spacecraft structures composed of porous ceramic materials, which combine high stiffness with low 
thermal expansion in a predefined domain. The optimal results of single objective and multi-
objective models are compared and the merits of the multi-objective models are explained. To 
realize the concurrent optimization of the structures composed of porous ceramic material, the 
independent macro and micro densities are introduced as the design variables and penalization 
approaches are adopted in both scales, i.e. SIMP (Solid Isotropic Material Penalization) in micro 
material scale and PAMP (Porous Anisotropic Material Penalization) in macro structure scale. A 
sandwich elliptically curved shell is optimized to verify the concurrent multi-scale design of 
structure configuration and microstructure of porous ceramic. And the axial symmetric and 3D 
concurrent optimization results are shown. The numerical examples demonstrate that the porous 
material is conducive to enhance the thermal and load carrying performances of sandwich shells.  

Key Words: Multi-objective Optimization, Porous Ceramic, Multi Geometrical Scale, Thermal 
Structure. 

1. INTRODUCTION 

Ultra-light design is the eternal pursuit of aero-spatial structures carrying with mechanical loads. 
Many such loading carrying structures often experience large temperature changes, 2000K in some 
high speed cases, which lead to an extreme thermal stress/deformation and activate structural failure 
or reduce the equipmental precision. Experiments have shown that ultra-high temperature ceramics 
(also know as porous functional ceramics), which are utilized as non-ablative thermal protective 
material, are one of the most competitive materials used in the mechanical and thermal loads 
bearing spacecraft structures. The porous ceramic material contains myriad of open or closed pores 
formed during the high temperature agglomerating process which characterized the materials with 
structural characters in micro scale [1]. Reference [2] evaluates the virtue of the porous ceramic in 
ultra light, manufacture and process facility and survival ability in high temperature environments 
are emphasized. However, it also points out that its large thermal expansion may cause 
incompatible deformation between the adjacent components. So it is important to design the 
structural configuration and material property to optimize the load carrying capacity and structural 
thermal expansion. With a single objective to minimize the structural compliance, article [3] probes 
into the concurrent design of the structure and its material under uniform temperature field and 
mechanical loads. It is found that results from this single objective optimization depend on the 
relative ratio of the mechanical load and the thermal loads. What’s more, with the structural 
compliance as the single objective, the optimum configuration of the macro structure is prone to 
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separate abnormally when the available material fraction is specified relatively higher. To cope with 
the above problems, a novel multi-objective optimization model are established to design the 
structural configuration and microstructure of porous ceramic concurrently to obtain the combined 
properties of high stiffness with low thermal expansion in a predefined domain.  

2. DESCRIPTION OF CONCURRENT AND MULTI-OBJECTIVE OPTIMIZATION 
MODEL 

  

FIGURE 1 Penalization-based concurrent optimization with two classes of density design variables 

Figure 1 schematically shows the idea of the concurrent topology optimization of the macro 
structure and its material micromaterial in the two geometrical scales. The macro and micro design 
domain are meshed into N and n elements respectively in order to numerically solve this 
mathematical problem via the Finite Element Method. Each element is then assigned a unique 
density value varying between 0 and 1, e.g. ( )( 1,2, , )iP i N   for the ith element in macro scale 
and ),,2,1)(( njYj   for the jth element in micro-scale. While implementing, topology 

optimization based on SIMP(Solid Isotropic Material Penalization) is adopted in micro material 
scale to obtain an optimum material microstructure comprised of solid isotropic material for porous 
ceramic, and topology optimization based on PAMP (Porous Anisotropic Material Penalization) is 
introduced in macro structural scale to find the optimum configuration of structures composed of 
the “optimum” porous material. Optimizations of the two geometrical scales are integrated into one 
system through homogenization theory based on the assumption of the homogeneity of the material 
in structural scale. Through optimizing the distribution of material on the two scales, the concurrent 
optimum design of the macro structure and its micro material configuration are obtained. The 
volume preserving nonlinear density filtering based on Heaviside step function is used together with 
the penalization approaches to prevent checkerboard pattern and to obtain a clear design. 

Two objectives, the structural compliance under mechanical loads and the thermal expansion in a 
predefined domain under thermo loads, are both normalized and then jointed through weighted 
coefficients to establish the multi-objective optimization model. The adjoint method is utilized to 
obtain the sensitivity of objective and the SQP method is adopted to solve and find the Pareto 
optimum of the bi-objective optimization. In this article, the compliance and the thermo expansion 
are normalized into a multi-objective function optimization problem so that the optimum results is 

DMA=PβDH 
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Base material 
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more flexible and adaptable, because final optimum topology configuration shows no dependence 
on the relative intensity of the mechanical and thermo load under the linear elastic assumption.  

3. RESULTS 

We apply the proposed multi-objective optimization model to a sandwich elliptically curved shell 
composed of porous ceramic to investigate effectiveness of the proposed concurrent optimization 
method at the two geometric scales. The core between the exterior and interior solid areas of the 
sandwich structure is composed of porous CSi ceramic material and is defined as the design domain. 
The configurations of the macro sandwich core and the microstructure of ceramics are concurrently 
optimized with topology optimization. The total objective contains both the normalized compliance 
when uniform pressure is considered and the normalized the summation of the deformation of the 
edge of the exterior solid surface when only thermal load applies which are joined with weighting 
coefficients 1w and 2w , and then is minimized. Table 1 presents the optimization results under 

different 1w and 2w . We also investigate the influences of “optimum” material volume fraction 
constraint and thickness of surface sheets on the optimal designs. 

1 2w w  Structural 
Topology 

Microstructural 
Topology 

4×4 arrays 

Objective 

Initial design：   Obj1=3.69406,   Obj2=0.01218 

1

2

1
0

w
w

  

Only mechanical load is 
considered   

Obj1=0.1101 

Obj2=0.01138 

1

2

0
1

w
w

  

Only thermo load is 
considered   

Obj1=6.7034 

Obj2=0.008588 

TABLE 1 Multi-objective multi-scale design results under different weight coefficients 

The denotation obj1, obj2 inside table 2 are the unnormalized structural compliance and the thermo expansion of the 
surface.  

When only structural compliance is taken into account, the optimum design of the core presents a 
“branch-like” configuration to link the exterior and interior surface sheets. And more material is 
distributed on the top area of the core to resist the deformation caused by the mechanical load where 
the mechanical load is larger because the angle between the uniform mechanical load direction and 
the direction of the outer normal of the exterior solid sheets becomes larger near the top area of the 
core. As expected the optimum micro material configuration is isotropic solid. However, when we 
only consider 1% percent thermo expansion of the outer surface, the optimum macro structural 
topology differs with that from the single structural compliance optimization. What’s more, the 
weighting coefficient of the thermo objective, 1%, can be apprehended as the scope of the 
temperature field receding to 80-160°C (because 2F  is the summation of the squared summation of 
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the nodal thermo expansion, 1% of the original thermo objective means the scope of the 
temperature field reduced to 10% of the original value equivalently) while the mechanical load 
remains unchanged. Consequently, more load cases can be covered through the adjusting the 
weighting coefficients. 
In the case of 1 2 0 /1w w   (only thermo load are considered), as can be observed from Table 2, 
the optimum micro material configuration is porous with “diamond-shaped” holes. And the 
optimum configuration of the core of the sandwich structure presents many “reinforced ribs” 
connecting the exterior and interior surface sheets. And the “reinforced ribs” will coordinate their 
thermo expansion to minimize the deformation of outer surface. What’s more, the material tends to 
distribute near the interior surface sheet and lower part of the core of sandwich structure. This is 
because the temperature of the lower part of the core is much lower and thus the thermo load is 
relatively weak. At the same time, the distribution of material near the interior surface will not 
cause significant thermo expansion of the exterior surface which is conducive to the heat protection 
and heat insulation of the design of the interior surface sheet. 

4. CONCLUSIONS 

When the available amount of material is insufficiently given, the optimum micro material 
configuration is porous with the optimization model which combines the structural compliance and 
thermo deformation as the objective function. The extraordinary properties of the porous ceramic 
material, such as high specific stiffness ratio, high specific strength ratio, high wave transmitting 
and the high temperature stabilization render it extremely promising for multi-disciplinary 
applications. When both the structural compliance and thermo deformation are considered in the 
objective function, an “optimum” material volume fraction is observed contrary to the minimization 
structural compliance design where the material is “the more, the better”. This provides us new idea 
in the lightweight design of the thermo elastic structures. The configuration of the structure and its 
effective material properties can influence the temperature filed. Combining the coupling effect will 
be the focus of our future research. 
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ABSTRACT 

The thermally-induced deformation of flexible space structures could be suppressed by controlling 
the temperature difference on certain cross-sections of these kinds of thin-walled structures. For this 
purpose, one must optimizes the applied heat flux to control the temperature difference and 
deformation of thin-walled structures. This optimization procedure could be very time consuming, 
because the radiation analysis has to be conducted in each iteration step. However, this problem can 
be greatly remedied with the help of the Fourier temperature finite element, which has been 
proposed in our early work. Based on this element, this paper develops a heat flux optimization 
method to control the thermally-induced deformation of thin-walled structures. A numerical 
example demonstrates the validity and efficiency of the proposed method. 

Key Words: Thin-walled Structures, Finite Elements, Thermally-induced deformation, Control. 

1. INTRODUCTION 

Large Flexible Space Structures (LFSS), such as satellite antennas, solar arrays and reflectors are 
widely used in space technology. These thin-walled structures are likely to undergo thermally-
induced responses due to the temperature change in orbit. Sometimes these responses are harmful to 
the system performance, such as the most famous accident of Hubble Space Telescope (HST) [1]. 
People have tried to use thermal actuators to achieve the shape control of the LFSS [2, 3]. Those 
actuators generate control forces due to the thermal gradient in the actuator or the mismatch of 
thermal expansion coefficients on the interface of the structure. However, this paper just uses a 
simpler idea that suppresses the structural deformation by controlling the temperature difference on 
certain cross-sections of the structure. 

To control the structural deformation, one can apply certain heat flux on the structure, which can be 
determined by certain optimization method iteratively. In each iteration step, a transient temperature 
problem with the radiation boundary condition has to be solved. Usually, this time-dependent and 
strong nonlinear problem is very time consuming. However, for these kinds of thin-walled 
structures, Xue et al. proposed a Fourier temperature finite element [4], which is characterized by 
the decomposition of the temperature into an average part and a perturbation part on the cross-
section of the structure. Owing to the orthogonality of shape functions, the average temperature and 
the perturbation temperature can be decoupled into two equations. Thus, the detailed transient 
temperature field can be efficiently solved. Based on the Fourier temperature element, this paper 
proposes an optimization scheme that can determine the desired heat flux to control the deformation 
of the structure. 

2. OPTIMIZATION ALGORITHM 

2.1 Fourier-temperature finite element subjected to heat flux loads 

The LFSS is usually made of thin-walled beams with closed or open sections, as shown in Figure 1. 
The temperature ( , , )T x s t  of a beam should satisfy a nonlinear partial differential equation [4]: 

http://define.cnki.net/WebForms/WebDefines.aspx?searchword=space+manipulator
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         

       
       (1) 

where c  is the specific heat;  is the material density; xk  and sk  are thermal conductivities along 
the axial and circumferential directions, respectively;   is the emissivity of the external surface of 
the beam; s  is the absorptivity on the surface of the beam;  is the Stefan–Boltzman constant; 

( , , )q s x t  and ( , , )cq s x t  are the space heat flux and the controlled local heat flux normal to the 
surface of the beam, respectively. 

         

    (a) open-section                                                 (b) closed-section 

FIGURE 1. Thin-walled beams subjected to controlled local heat flux qc and space heat flux q 

Supposing M sets of controlled heat flux ( )( 1,2,... )m
cq m M  act on the surface of the thin-walled 

beam at circumferential position ( )m
ps  in length of ( )m

as . The absorbed heat flux is: 
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where                          
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 / 2 / 2
0 / 2 / 2

m m m m m
m p a p a

c m m m m m m
p a p a

s s s s s
s s s or s s s


    

 
   

                      (3) 

The temperature ( , , )T x s t  on the beam cross-section can be decomposed into an average part 
0

iT and a perturbation part n
iT  and is interpolated by the values at two element nodes: 

         
2

0

1

, , n n
i i i

i n
T x s t T t T t N s N x



 
  

 
                                   (4) 

Because of the orthogonality between the shape function in axial direction  iN x  and the shape 

function in circumferential direction  nN s , the conductivity equations of the whole structure can 
be decoupled into the following two finite element equations:  

     0 0 0 0 0 0 0
ct t   CT K T R T P P

 
                                     (5)

 

     0n n n n n n
ct t    

 
CT K R T T P P

                                   
   (6) 

where C  is the specific heat matrix; 0K  and nK  are the conductivity matrices; R  is the radiation 
vector or matrix; 0P  and nP  are thermal loading vectors due to the space heat flux; 0

cP  and n
cP  

are thermal loading vectors due to the controlled local heat flux; superscripts 0  and n  are 
corresponding to the average temperature and the perturbation temperature, respectively. In this 
way, the perturbation temperature vector nT  can be solved after obtaining the average temperature 
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vector 0T , which greatly improves the computational efficiency [4]. After obtaining the 
temperature ( , , )T x s t , the deformation u  of structures subjected to controlled local heat flux cq       
and space heat flux q  can be obtained by solving the following equation: 

 Ku = F T         
         

                                              
   (7) 

where K is the stiffness matrix; F  is the equivalent nodal force vector due to thermal strain. 

2.2 Optimize the controlled local heat flux 

Take the magnitude of the controlled local heat fluxes as design parameters p , which can be 
determined through the following optimization formulation: 

Min        T( , )f p u W W  
 

S.t.              0 0 0 0 0 0 0
ct t   CT K T R T P P   

      
                                                      

      
     0n n n n n n

ct t    
 

CT K R T T P P
 

 Ku = F T  

where  * W u Su  is the residual vector; *u are the desired deformation; and S is a selective 
matrix that specifies the location of desired deformation. This Least-Squares problem can be 
efficiently solved by the Gauss-Newton method iteratively [5]: 

   
1T T1 1 1 1 1 1( ) 1,2,k k k k k k k k


        
  

p G p p J J p W
 
          (8) 

where /   J S u p  can be obtained by the following sensitivities analysis. 

2.3 Sensitivities analysis 

Differentiating Eqs. (5), (6) and (7) with respect to the kth design parameter kp , obtains: 

 0
0 0 0 0 0

, , ,,k k kp p c pT
  CT K R T P

                                               
   (9) 

      , , ,k k k

n n n n n n
p p c p    RCT K R T P H T

                                  
  (10) 

0
0

, , ,, , nk k k

n
p p p 

T T
Ku F T F T

                                             
  (11) 

Solving the linear ordinary differential equations (9) and (10) step by step by the Wilson-  method, 
one can obtain 0

, kpT , , k

n
pT . Substituting 0

, kpT  and , k

n
pT into Eq. (11), , kpu can be obtained, and thus one 

can calculate /   J S u p . 

3. NUMERICAL EXAMPLE 

In this section, the proposed deformation control method is used to suppress the deformation of the 
HST solar array subjected to solar heat flux. The schematic view of the HST solar array is shown in 
Figure 2. The geometric dimensions and material properties can be found in [1]. This structure will 
undergo certain thermal deformation subjected to the suddenly applied solar heat flux 

2
0 1350 W/mq   along the negative Y–direction. To suppress this deformation, the controlling 
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heat flux cq  is applied on small part of the surfaces but throughout the whole length of the thin-

walled booms (see FIGURE 2, where p   and / 6c  ). With the proposed method, the 

optimal cq  can be easily obtained as 3 22.048 10 ( / )cq W m   by minimizing the deformation in 
Y–direction at position A. 

                                
FIGURE 2. Model of the HST solar array                  FIGURE 4. Temperature field of the boom 

                                 
FIGURE 3. Model of the HST solar array                  FIGURE 5. Section-temperatures of the boom 

The deformations of the HST solar array subjected to solar flux with and without the controlling 
heat flux are shown in Figure 3. It observes that the HST solar array is well kept to its original 
shape with the controlling heat flux. The corresponding temperature field of the thin-walled boom is 
shown in Figure 4. Figure 5 is the comparison between section-temperatures of the thin-walled 
boom obtained by ABAQUS shell element model and the Fourier temperature element with the 
same controlled heat flux. The differences are less than 0.2% . However, there are 13072 nonlinear 
equations in ABAQUS model, while there are only 401 nonlinear equations and 2406 linear 
equations in the Fourier temperature element model, which greatly saves the computational time. 

4. CONCLUSIONS 

Based on the Fourier temperature element, this paper develops a method to control the deformation 
of thin-walled structures by changing the temperature field of the structure. The numerical example 
demonstrates the effectiveness and efficiency of using this method to solve engineering problems. 
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ABSTRACT 

The present paper discusses experimental and computational studies of the flow and thermal 
processes in a laboratory drying oven with a natural air circulation to improve temperature 
uniformity inside the storage chamber. The device is mainly used in the laboratories of the food and 
chemical industry to store products and samples at a constant, spatially uniform temperature. The 
actual device has been assessed according to a certification procedure and then numerically 
simulated on the basis of the mathematical model developed, including all heat transfer modes, 
temperature-dependent air properties and local heat transfer coefficients on the external walls, etc. 
In this study, a source of the non-uniformity of the temperature field was identified. As a result, a 
configuration of the electrical heaters were modified. Furthermore, a shape and location of the 
modified heaters were optimized using genetic algorithm coupled with CFD computations of the 3-
D model of the drying oven. 

Key Words: Heat Transfer, CFD, Drying oven, Temperature uniformity, Genetic algorithm. 

1. INTRODUCTION 

Drying ovens and thermostatic cabinets are devices that are broadly installed in laboratories of 
chemical, food and pharmaceutical industry to store products and samples in a desired uniform 
temperature. This means that the temperature distribution in such devices is controlled very 
precisely. A typical solution for smaller storage capacities are the units with natural air circulation, 
where the fresh air is sucked from ambient through intake holes located in a back wall of the 
devices. Then the air heated by the electrical heaters flows through the distribution gaps into the 
storage chamber. From this region the air flows out of the oven through the main outlet equipped 
with a valve controlling the air change rate in the chamber. Configuration of the device is shown in 
Figure 1(a). 

The quality of such devices is measured taking into account the temperature uniformity inside the 
main chamber. Such studies are well known in the literature [6-9]. In the experiments, the 
temperatures are captured by the sensors located in the corners and in the center of the main 
chamber. Therefore, companies producing these devices continuously improve products 
experimentally changing a configuration of the distribution gaps for a fixed configuration of the 
electrical coil heaters. This method may be successful, however, it is very time and cost consuming. 
Another disadvantage is that the temperatures are only monitored instead of flow field. 

The aim of this study is to build a three-dimensional geometrical model of the device, formulate a 
mathematical model taking all the thermal and flow processed occurring in the chamber, and finally 
identify the problem of the non-uniform temperature distribution, especially at higher values. In the 
second stage, the experimental tests were performed for the modified heaters. These were followed 
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by the optimization process of the heater positions using the genetic algorithms [4]. Similar studies 
were already published for the heat generating parts of the electrical transformer [5]. In this case, 
the objective function in the optimization procedure was the temperature uniformity defined as a 
temperature difference of the centre and particular corner value. 

2. COMPUTATIONAL MODEL AND EXPERIMENTAL TESTS 

To analyze the flow and the temperature field within a drying oven, a three-dimensional model was 
created based on technical documentation provided by a drying oven manufacturer. The overall 
dimensions of the device are width 0.440 m, depth 0.342 m, and height 0.480 m. The volume of the 
storage space is 15 L. The main target of this research was to stabilize the temperature distribution 
within the storage chamber. This means that all elements that may influence both flow field and 
heat transfer are geometrically modeled. In general, the device being produced consists of a back 
internal wall with a few rows of intake gaps in the upper part, side internal walls and two electrical 
coil-shaped heaters placed below the bottom internal wall with intake gaps and the insulated 
external walls. A geometrical model of the currently produced device is shown in Figure 1.  

 
FIGURE 1. A drying oven with a natural air circulation (a) geometrical model, and (b) photo with a 

location of the temperature sensors. 

The formulated mathematical model included equations for the pressure, velocity, temperature, 
radiative heat fluxes and turbulence. All the air properties were defined as temperature-dependent 
values [2], while those for solid materials originated from the specifications delivered.  

To define realistic boundary conditions, the model also consists of the secondary chamber between 
the main chamber and the insulation layer. Moreover, computational domain was also enlarged by a 
volume of ambient air surrounding the device. In this way, the most important heat transfer mode, 
i.e. natural convection was also considered outside the drying oven. 

The second mode influencing the temperature field in the device was thermal radiation occurring 
between internal chamber walls, and between these walls and heaters. Furthermore, it was also 
important to take heat conduction into consideration.  

Computational results obtained using this CFD model [1] were used to determine a quite low 
temperature uniformity obtained in experimental tests. These measurements were performed 
according to the certificate procedure for such devices. This means that the sensors captured 
temperatures on centre plane (12 cm from the internal bottom wall) in the corners and in the centre 
of the storage chamber are listed in Table 1, while the PT-100 sensor locations are shown in Figure 
1(a). As shown in first three rows of this table for the case of temperature level of 170°C, the 
difference between corner and centre values is unacceptable. 
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Parameter Sensor number 

 1 2 3 4 5 

Mean temperature, °C  186.0 190.6 176.6 185.7 175.6 

Standard deviation, °C  0.6 0.5 0.2 0.5 0.2 

Temperature uniformity, °C  0.0 4.6 9.4 0.3 10.4 

Mean temperature, °C  150.4 148.9 153.0  150.2 153.8  

Standard deviation, °C  0.2 0.1  0.2  0.2 0.1  

Temperature uniformity, °C  0.0 1.5 2.6 0.2 3.4 

TABLE 1. Experimental results of the temperature field inside the chamber of the drying oven for 
two heater types. A location of the sensor numbers is shown in Figure 1(b). 

3. RESULTS 

Computational tests were performed for different numerical and physical parameters such as higher 
discretization orders, two levels of mesh size, various turbulence models, wall emissivities and 
effective thermal conductivities for electrical heaters. Results obtained for one of these 
computations is presented in Figure 2(a). As shown, computational results are qualitatively different 
than those obtained from the experiments. In general, all the numerical results showed a very high 
temperature uniformity. Therefore, it was necessary for perform additional experimental tests in 
which temperature of the heater was measured using infrared camera. As illustrated in Figure 2(b), 
heat generated is definitely non-uniform along a wire of the heater. As a results, a single heater 
including eight straight segments was replaced with the four heaters with two segments. Results of 
the temperature uniformity in the chamber obtained for this case are shown in the second three rows 
of Table 1. Hence, the main conclusion of this part of the study was that the quality of the heater is 
mainly responsible for the temperature distribution. 

 
FIGURE 2. (a) Comparison of temperature field obtained from experiments (subscript m) and 

computations (subscript c). 
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In the second part of this research, an  optimization procedure based on genetic algorithm (GA) was 
applied to improve a temperature uniformity in the main chamber. This parameter was defined as an 
objective function that was computed using CFD analysis performer in Ansys Fluent code [3]. The 
optimized parameters were geometrical parameters defining a position of each electrical heater. The 
GA code written in Fortran was automatically executed in a parallel manner calling particular 
Ansys Fluent jobs. 

Results of the optimization will be shown during the conference. 

4. CONCLUSIONS 

In this paper, experimental and computational studies of the flow and thermal processes in a 
laboratory drying oven with a natural air circulation were performed. As a result, the temperature 
uniformity inside the storage chamber was modified in two stages. In the first one, based on CFD 
model and infrared measurements, the main problem of a low uniformity was identified and 
eliminated. In the second part of this research, a further calibration of the heater was carried out 
using optimization procedure. The coupled CFD and GA procedure allowed the authors to improve 
the 3-D temperature distribution in the device. 
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ABSTRACT

Steady-state two-dimensional laminar natural convection around a triply-connected region is analyzed
numerically, using a spectral finite difference scheme. The region is assumed to be of infinite extension
consisting of two nearly parallel horizontal walls with two nearly circular cylinders. A boundary-fitted
conformal map is generated analytically. In addition, transformation of a variable is adopted to support
the condition at an artificially generated boundary.

Key Words: Conformal Mapping, Spectral Analysis, Natural Convection

1. INTRODUCTION

Analysis of natural convection heat transfer is one element of heat and fluid flow problems, e.g. heat
transfer to liquid metals from cylinders [2], to air from cylinders [1]. Recently-developed spectral fi-
nite difference schemes [5] are very effective to analytical or numerical treatment of heat and/or fluid flow
problems in two-dimensional or in axisymmetric solutions, but not restricted to them. Mathematical intro-
duction of multiply-connectedness is required as shown in [7] (doubly-connected), [6] (triply-connected),
and [8] (quadruply-connected). The spectral finite difference scheme has the following property: math-
ematically exact spatial spectral decomposition, high spatial resolution, high speed computation, and
accepting non-uniform grid spacing.

2. ANALYSIS

2.1. GENERAL

Steady-state two-dimensional laminar natural convection around a
triply-connected region in a nearly parallel horizontal enclosure is
analyzed numerically, using a spectral finite difference scheme. The
region is assumed to be of infinite extension with two nearly circular
cylinders as shown in Figure 1, supplemented with no slip flow and
uniform surface temperatures along walls and nearly-circular cylin-
ders. Under a boundary-fitted conformal mapping coordinate system
(α, β), dimensionless Cartesian coordinate system (x, y) (y : verti-
cally upward), and a Boussinesq approximation neglecting dissipa-
tion terms, the dimensionless governing equations ( vorticity trans-
port equation, relation between vorticity and a stream function, and

azc
x

y

FIGURE 1. Schematic con-
figuration in
case of p > 0

energy equation; ψ : dimensionless stream function based on UL, ζ : dimensionless vorticity based on
U/L, T : dimensionless temperature ≡ ( local temperature −TL)/∆T , t : dimensionless time based on
L/U ) are
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respectively, where Gr, Pr stand for a Grashof number ( based on ∆T and L ) and a Prandtl number,
and L : width faraway, U ≡ (ν/L)

√
Gr, ν : kinematic viscosity, ∆T (> 0) : reference temperature

difference, TL : reference temperature. Coordinates x and y are based on L.
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2.2. MAPPING FUNCTION

Introduced is the following mapping function:

− 1
2π

ln

{
1− (

1− k2
) (

i tanh
α + iβ

2
+ p

)2
}

= z + b +
δ2

z − a
, (4)

where z ≡ x+ iy; b, p : real, 0 < k < 1, a > 0, δ > 0, δ ¿ 1,−π ≤ β ≤ π. Consequently, it is assumed
that one of the two nearly-circular cylinders are specified by α = 0, i.e., |z − a| = δ, and the second
nearly-circular cylinder is specified by α = α0(< 0), |β| ≤ π such that eα0 ¿ 1 and to be separated
from each other∣∣∣∣a + b +

1
2π

ln
{

1− (
1− k2

)
(i− p)2

}∣∣∣∣ À δ +
2(1− k2)

π

∣∣∣∣
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∣∣∣∣ eα0 .

Finally, the closed field region is specified by α0 ≤ α ≤ 0, |β| ≤ π. Jacobian J becomes

√
J

eα
=

2
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2.3. TRANSFORMATION OF A VARIABLE β

In case of α = 0, tanh α+iβ
2 = i tan β

2 , so that the following is introduced independently of α:

tan
ω

2
≡ tan

β

2
− p ; − π ≤ ω ≤ π . (6)

Consequently

∂
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2
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)
∂
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. (7)

2.4. MULTIPLY-CONNECTEDNESS

Multiply-connectedness leads at every circumference Cj(j = 1, 2; for j = 1, z ≈ a(α = 0), ω1 ≤
|ω| ≤ ω2; for j = 2, z ≈ zc ≡ −b − 1

2π ln
{
1− (1− k2)(i− p)2

}
, (α = α0, |ω| ≤ π) of the isolated

configuration to ∮

Cj

∂p0
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dβ = 0 ,

which becomes
1√
Gr

∮
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∂ζ

∂α
dβ +

∮

Cj

T
∂y

∂β
dβ = 0 (8)

( under a no-slip flow condition at a stationary wall), where p0 stands for local pressure, and

ωj ≡ 2 tan−1

[
1− exp 2π

{
(−1)j−12δ − a− b

}

1− k2

]1/2

, (j = 1, 2) , a + b− 2δ > 0 .

2.5. BOUNDARY CONDITIONS AT PHYSICAL BOUNDARIES

As dynamic boundary conditions, no slip flow at nearly-parallel walls and physical cylinder boundaries
is assumed; without loss of generality (ω3 ≡ π − 2 tan−1

√
1− k2)

ψ(0, ω) = 0 , π > |ω| > ω3 ; ψ = ψj ( constant to be determined on Cj , j = 1, 2) , (9)

∂

∂α
ψ (0, ω) = 0 , π > |ω| > ω3;

∂ψ

∂α
= 0 on Cj(j = 1, 2) . (10)

For thermal boundary conditions, Dirichlet type surface boundary conditions are assumed, without loss
of generality

T (0, ω) = 0 , π > |ω| > ω3 ; T (0, ω) = 1 , ω1 < |ω| < ω2 , (11)
T (α0, ω) = T1 , (0 < T1 < 1) , |ω| ≤ π . (12)
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2.6. AUXILIARY CONDITIONS AT α = 0, |ω| ∈ (0, ω1) ∪ (ω2, ω3)

At α = 0 and =(z) = 0, for any scalar φ from the continuity of scalar quantity and its gradient,

φ+ = φ− ,
1√
J+

∂φ+

∂α
= − 1√

J−
∂φ−
∂α

, (13)

where φ+ = φ(ω), φ− = φ(−ω), J+ = J(ω), J− = J(−ω), ω > 0. In Eq.(13) arguments should be
regarded as ω instead of β. The second part of Eq.(13) becomes

∂

∂α

{
1
2

(φ+ + φ−)
}

=
√

J+ −
√

J−√
J+ +

√
J−

∂

∂α

{
1
2

(φ+ − φ−)
}

. (14)

The first part of Eq.(13) is just (φ+ − φ−) /2 = 0, which applies to ψ, ζ, and T for φ.

2.7. SPECTRAL DECOMPOSITION

Spectral decomposition of variables is based on Fourier series:


ψ(α, β, t)
ζ(α, β, t)
T (α, β, t)


 =

∞∑

n=1




ψsn(α, t)
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


ψcn(α, t)
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
 cosnω , (15)

where −π ≤ ω ≤ π.

2.8. DISCRETIZATION AND TIME INTEGRATION

Numerical integration schemes are as follows: the system of Eqs.(1)-(3) with respect to ω are decomposed
into the corresponding Fourier components of ω, discretized in time and space using a finite difference
scheme with respect to α, together with a mixed type of boundary conditions at α = 0, [3]. Although
any non-uniform grid spacing in α can be accepted, the following may work for the n-th grid point
αn(0 ≤ n ≤ M + 1;M : suitably chosen integer, M + 1 for α = 0.

αn = −h

{
sinh γ (M − n)

sinh γ
+ 1

}
, h ≡ (−α0)

/(
sinh γM

sinh γ
+ 1

)
, (16)

where γ is a real parameter (> 0), and the limit γ → 0 corresponds to a uniform grid spacing in α. The
larger the value of γ is, the finer the relative grid spacing near the surface of the cylinder at α = 0 is.
As the initial thermal field the pure heat conduction field is adopted, and an initial stationary flow field is
assumed, which is integrated semi-implicitly with respect to time to get a steady-state solution, applying
a diagonal dominant form. Total force Fj acting on the stationary surface ( with uniform temperature )
Cj(j = 1, 2) ( excluding stationary buoyancy force ) is given by

Fj =
1√
Gr

∮

Cj

ζdz − 1√
Gr

∮

Cj

∂ζ

∂α

(
z

/
dz

dα

)
dz , (17)

where as usual integration is carried out in the counter-clockwise direction. Mean Nusselt number Num

at the surface Cj is given by

Nuj = ±
∮

Cj

∂T

∂α
dβ

/∮

Cj

√
Jdβ , (18)

where + sign applies for C1 and − for C2. For the estimate of denominator∮

C1

√
Jdβ = 2πδ ,

∮

C2

√
Jdβ ≈ 4(1− k2)

∣∣∣∣
i− p

1− (1− k2)(i− p)2

∣∣∣∣ eα0 . (19)

3. RESULTS AND DISCUSSIONS

3.1. FIELD CHARACTERISTICS
Figures 2 and 3 show an example of steady-state streamlines and isotherms respectively at Gr = 1000, P r =
0.7 for a = 1, b = −0.463, p = 1, δ = 0.1, k = 1/

√
2, α0 = −1.86, T1 = 0.5, which are strongly

influenced by the mutual cylinder configuration and T1. δψ and δT stand for the difference of stream-
lines and isotherms respectively. Examples of global quantities corresponding to Figures 2 and 3 are F1

≈ −0.02 + 0.004i and Nu1 = 1.22 .
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FIGURE 2. Streamlines at Gr = 103, P r = 0.7; δψ =
2.5× 10−5, minimum of ψ ≈ −1.8× 10−4

FIGURE 3. Isotherms at Gr = 103,

P r = 0.7; δT = 0.2.

3.2. TOTAL CHARACTERISTICS

Under the same configuration with Figure 2, mean Nusselt number Nu1 varies with Gr as
Nu1(Gr = 0.1) = 0.70, Nu1(Gr = 10) = 0.95, Nu1(Gr = 103) = 1.22 .

As far as the above mentioned configurations and a thermal boundary condition is concerned, the absolute
value |minimum of ψ|/√Gr ( for a low Grashof number case ) is 6× 10−6 (Gr = 1000, P r = 0.7, p =
1, eα0 = 0.156, T1 = 0.5), which is nearly the same order as that in a closed contour case 10−6 with
completely different closed configuration ( elliptic cylinder ) and thermal boundary conditions [4]. The
maximum degree of Fourier series used in Figures 2 − 3 is 25 for both sine and cosine components.

4. CONCLUSIONS

Introduction of multiply-connectedness leads to a reasonable analysis of natural convection for two iso-
lated objects in a parallel enclosure, using a spectral finite difference scheme with a suitably chosen
conformal mapping function.
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ABSTRACT 

Sheared vortex-induced vibration (VIV) of a circular cylinder is simulated using stabilized finite 
element (SUPG and PSPG) methods at low Reynolds number (Re). The cylinder is allowed to 
oscillate in in-line and transverse directions. Sheared parameter () is defined as GD/UC where G is 
constant velocity gradient (dU/dy), D and UC are the diameter of the cylinder and the incoming 
velocity at the centre of the domain respectively. In the present work, flow of VIV are simulated for 
=0%, 2%, 10%, 20%, 30% and 40%. Structural damping coefficient, , is kept constant to zero so 
that the displacement responses can be maximized. In the present simulation, Re is varied from 70-
500 and the value of the reduced velocity, U*, is kept constant. Two hysteretic loops are observed at 
Re ~ 83 and 325. However, second hysteretic loop is not observed for =40%. The two hysteretic 
loops are observed for responses such as rms (root mean square) variation of in-line displacement, 
transverse displacement, lift and drag coefficients as Re is varied. However, rms variation of 
transverse displacement does not show the second hysteretic loop for all values of 2S, C(2S) and 
S+P modes of vortex shedding are observed for various cases. 

Key Words: Vortex-induced vibrations, Stabilized Finite Element Methods, Circular Cylinder, 
Sheared Flow. 

1. INTRODUCTION 

A spring-mounted cylinder undergoes vibrations due to unsteady forces acting upon it in transverse 
and in-line directions. Response of a cylinder depends upon the low or high value of mass-damping 
(mwhere m* is the non-dimensional mass ratio (4m/∞D2). Lock-in/synchronization and 
hysteresis are phenomena which take place in vortex-induced vibrations.  

Khalak and Williamson (1999) have done VIV experiments for low value of m* and only transverse 
oscillations of the cylinder are allowed. Three response branches are observed. These branches are 
named as the initial amplitude branch, upper and lower branch. Mode of vortex shedding is 2S and 
2P for various branches. Singh and Mittal (2005) have simulated vortex-induced vibration of a 
circular cylinder at low Re for low value of m* (=10). The cylinder is allowed to move in both the 
directions i.e., in-line and transverse directions. Two sets of computations are carried out to see the 
effect of Re and reduced natural frequency, Fn (= 1/U* = fnD/U). First set of simulation consists of 
the variation of U* at fixed Re=100. In the second set of simulation, Re is varied as U* is kept 
constant. 2S, C(2S) and P+S are the modes of vortex shedding at various Re.   

Lei et al. (2000) have solved the incompressible 2D Navier-Stokes equations for the flow of a 
stationary circular cylinder with the shear introduced at the inlet for Re=80 to 1000 and for shear 
parameter,  = 0.25. Mukhopadhya et al. have simulated 3D linearly sheared flow past a stationary 
cylinder for mean Re = 131.5 and for = 0.02. 
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2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Navier-Stokes and continuity equations are solved using stabilized finite element methods. Stress 
tensor is expressed as the sum of its isotropic and deviatoric parts. Details about the methods can be 
found out in Tezduyar et al. (1992).  A spring-mounted solid body immersed in the fluid 
experiences unsteady forces and it may exhibit rigid body motion. The equations to the motion of 
the body along in-line and transverse directions are written. Unknowns are acceleration, velocity 
and displacement in both the directions. To accommodate the motion of the cylinder and the 
deformation of the mesh, the employed formulation can handle moving boundaries and interfaces. 

The boundary of the cylinder is assigned no slip condition. The equation to the motions is solved 
and the location of the cylinder and the flow velocity on the cylinder surface are updated at each 
time step. Sheared inflow is assigned at the inlet. The viscous stress vector is set to zero at the exit. 
At the top and bottom boundaries, velocity in transverse direction and stress vector along the 
boundaries are assigned to zero. 

                                                           3. RESULTS 

 

FIGURE 1. Sheared Vortex-induced vibration  for U*=4.92 and =20%: variation of  rms in-line 
displacement, transeverse displacement, lift and drag coefficient of the cylinder with Re. 

Figure 1 shows the variation of  rms values of various parameters for =20%. First hysteretic loop 
occurs around Re ~ 80. Zoomed views of the variations are shown for  Re = 75-85 in the second 
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column. Second hysteresis loops are observed for Re ~ 340. The absence of this loop for Yrms/D can 
be observed. However this loop exists for the variation of Ymax/D. Figure 2 shows the same 
variations for =30%. First hysteresis loop is similar to the previous case. But the range of the 
second loop is different and it is spread over Re = 225 - 325. For Re = 75 - 85 (first hysteresis),  
variation of Yrms/D is almost similar for =20%, 30%. Its value after the sudden jump at Re~85 is 
about 0.38 for both the values of . But the value of Xrms/D after the sudden jump at Re~85 is about 
0.012 and 0.018 for =20% and 30% respectively.  

 

 

FIGURE 2. Vortex-induced vibration with sheared inflow for U* = 4.92 and =30%: variation of rms 
in-line displacement, transeverse displacement, lift and drag coefficient of the cylinder with Re. 

Figure 3 shows that the mode of vortex shedding for Re = 82 (increasing as well as decraesing Re 
case), 325 and 400 and for = 30% . The various modes are described by Williamson and Roshko 

Clrms 

Cdrms 

Xrms/D 

Yrms/D 

Xrms/D 

Clrms 

Cdrms 

Re 
Re 



 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 

(1988). It is observed that mode of shedding is 2S for Re = 82 while it is C(2S) for Re = 82 
(decreasing Re case). For Re = 325 (decreasing Re) and 400, it is S+P mode of vortex shedding. In 
S+P mode of vortex shedding, one single vortex and two counter-rotating vorteces are shed 
alternately. However, it is somewhat disorganized in the far wake for Re = 400. 

 

 

FIGURE 3: Vortex-induced vibrations with sheared inflow for U* = 4.92: instantaneous vorticity 
field for  = 30% for different Re. Flow fields are shown at the time instant where the lift 
coefficient is maximum. 

4. CONCLUSIONS 

It is observed that the introduction of the shear at the inlet does not have an effect on the 
maximum displacement in the transverse direction. Range of Re, for which the two 
hysteresis loops are observed, depend upon the value of . Maximum in-line displacement 
when the sudden jump occurs at Re~85, depends on . 
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ABSTRACT 

By smoothing, a family of smoothed FEM (S-FEM) has been developed recently. It possesses the 
advantages of both meshfree methods and the standards FEM, and works well with triangular and 
tetrahedral types of background cells/elements. This paper presents the general formulation of S-
FEM for thermal problems in one, two and three dimensions. To examine our formulation, 
computational results are compared with those obtained using other established means. 

Key Words: Meshfree Methods, Gradient Smoothing Technique, Transient Heat Transfer. 

1. INTRODUCTION 

It is well-known that the compatible displacement-based FEM can result in significant accuracy loss 
in solution due to the so-called overly stiff phenomena and the mesh distortion [1]. Meshfree 
methods have thus been proposed in the new direction of establishing “softer” models [2]. One of 
main issues in many meshfree methods is the “spatial” instability due to the inadequate integration 
of the weak form inherent in the nodal integration [3]. To remove this type of instability, the strain 
smoothing technique was further generalized [4] to functions in the G space [5]. Wu et al. [6] 
achieved the findings on accuracy, efficiency and convergence of solutions in both temperature and 
its gradient and heat flux. They also carried out the thermoelastic analyses using the NS-FEM [7]. 
Mohammad used the gradient smoothing technique for the smoothed fixed grid FEM (SFGFEM) [8] 
and the nonlinear inverse geometry thermal problems were analyzed in detail. The proposed 
SFGFEM is shown more accurate and facilitates integration over boundary intersecting elements. 

It is well-known that a spatially stable model always produces a unique and convergent solution for 
steady heat transfer problems when functions are bounded at least in G1 norms [5]. However, this 
does not guarantee a temporal stability for unsteady thermal problems. The instability may be 
restored by added a stabilization term into the smoothed potential energy functional of the original 
NS-FEM [9]. More effectively, such instability can be suppressed by constructing the smoothing 
integration domain based on element edges. 

Wu et al. [10] has formulated the ES-PIM for heat transfer problems, and evaluated the heat transfer 
process of a practical cooling system of the rapid direct manufacturing. The ES-FEM was further 
used for solving dynamic nonlinear heat transfer problems [11], which gives better understanding of 
realistic physical thermal systems and processes. Wu et al. [12] has also established an ES-FEM for 
incremental heat transfer equilibrium equations. To reduce the computational efforts, a 
quasilinearization scheme is adopted to linearize the nonlinear algebra equations, and the Euler 
backward method is used for time integration for its unconditional stability allowing larger time 
steps. Li et al. [13] then used the ES-FEM to conduct the research of 2D and 3D hyperthermia 
treatment for the first time. The use of the close-to-exact ES-FEM is clearly advantageous. 

2. SMOOTHED GALERKIN WEAK FORM 

Detailed constructions of the gradient smoothed domain based on surface triangles can be found in 
[12]. For three-dimensional spaces, the smoothed temperature gradients are given by 
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To solve the time-dependent nonlinear system, the Euler backward unconditionally stable method is 
used by 
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
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Using the smoothed temperature gradient, we obtain the temperature variation of practical system 
inside each edge-based smoothing domain in the following set of smoothed algebraic equations 

( )/t t k t c t r i t t v t t st          C K K K T Q Q  

( 1) ( 1) ( 1) ( 1)t t k i t t c i t t r i t t C i          Q Q Q Q    (4) 
The terms in the left-hand side can be found in the dissertation [12]. Note that the foregoing 
discretized system equations are obtained based on a number of smoothing domains created using 
the face-based smoothed technique. The global stiffness and vector are then assembled based on 
these smoothing domains that are similar to elements used in FEM. 

3. RESULTS 

As illustrated in Figure 1, the exterior surfaces of weldment exchanges heat with the air, and the 
front surface is continuously heated through the hot fluid flow. The right surface of substrate is 
prescribed with constant heat flux, and bottom surface is specified with room temperature. The 
temperature of the lower pass is 1000°C and 2000°C for the upper pass. Several points are also 
sampled to check the accuracy of numerical solutions of the present ES-FEM. 
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FIGURE 1. Computational model subjected to complex nonlinear convection and radiation boundary 
conditions. 

Computational parameters are taken as: k0x=k0y=k0z=40W/(m·°C),  ρ0=6000kg/m3, c0=50J/(kg·°C), 
hc0=1500W/(m2·°C), q=1000W/m2, Tr=25°C, Tb=200°C, ε=1 (black body assumed), σ=5.6710-

8W/(m2·°C4), 1=0.006/°C, 2=0.008/°C, 3=0.005/°C, 4=-0.0002/°C and 5=0.001/°C. In 
nonlinear transient analysis, the time step ∆t is selected to 0.005 sec for both ES-FEM and standard 
FEM and the cooling system approaches the steady state at t=3.0 sec or so. 

The following Figure 2 confirms the bound property of the close-to-exact ES-FEM model for more 
complicated nonlinear problems of heat transfer. It can be clearly observed that the present ES-FEM 
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performs much softer than linear FEM and converges to the reference solution from below. The ES-
FEM solution is bounded from two sides respectively by FEM and NS-FEM. The results of 
equivalent energy norms also show that the temperature result of ES-FEM is more accurate than 
that of FEM and worse than that of linear NS-FEM using the same sets of nodes. 
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FIGURE 2. Equivalent energy converging to the reference solution for the two-pass weldments with 

the increasing of DOF using the same tetrahedral mesh (T=0°C). 

The ES-FEM is then used to analyze the nonlinear transient heat transfer problems and the contours 
plotted in Fig. 4 demonstrate the temperature distributions at t=1.5s. The background tetrahedrons 
used in analyses of ES-FEM and FEM are generated automatically with total 1437 nodes. The 
reference solution is obtained using the higher order Solid 90 based on the ANSYS package. 
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(a) ES-FEM solution (1437 nodes) (b) Reference solution (20133 
nodes) 

(c) FEM solution (1437 nodes) 

FIGURE 3. Comparison of computed temperature distributions at t=1.5 sec. 

It can be clearly seen that the present ES-FEM formulation can give more accurate solution in 
temperature compared with linear FEM using the same 4-node tetrahedral mesh especially in the 
high gradient region. This finding will be further confirmed numerically by checking nodal 
temperature. 

Note that in present analysis only linear polynomial basis is used to interpolate the temperature field. 
It has been found in Ref [15] that for the 3D linear problems the present ES-FEM is significantly 
more accurate than FEM using the same mesh but takes a longer time to solve. However, the ES-
FEM for 3D problems is found to be more efficient than the 4-node tetrahedral FEM in terms of 
CPU time for the same accuracy in both energy and displacement error norms. 

4. CONCLUSIONS 

From this study, some remarks can be made as follows: 
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1. The ES-FEM works well with tetrahedral meshes that can be easily generated thanks to the 
softening effects on the conductivity matrix. 

2. The ES-FEM formulation can effectively analyze the nonlinear transient problems of heat 
transfer with complex geometry and boundary conditions. 

3. The ES-FEM models perform much softer than those of FEM model and stiffer than that of 
NS-FEM model, which indicates the present ES-FEM model can achieve much accurate 
temperature solutions than standard FEM using the same linear meshes in solving transient 
nonlinear heat transfer problems. 
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ABSTRACT 

A generalized scheme of the Characteristic Based Split (CBS) algorithm for numerical simulation 
of incompressible non-isothermal non-Newtonian fluid flows is presented. The generalization is 
twofold: one is that it extends the CBS algorithm from Eulerian description to Arbitrary 
Lagrangian-Eulerian (ALE) description; the other is that two parameters   and   are introduced 
such that the classical CBS algorithm is a special case of this generalized scheme with 1   and 

0  . Numerical results of the non-isothermal Poisseuille flow problem with the power-law fluid 
model show that, by tuning these two introduced parameters, such generalized scheme may perform 
better than the classical CBS algorithm in a wide range of Reynolds and thermal Peclet numbers. 
With the adaptive coupled finite element (FE) and meshfree (MF) method for spatial discretizations, 
the performance and the capability of the proposed scheme is further validated by the thermal 4:1 
contraction and the injection moulding problems. 

Key Words: CBS, non-isothermal non-Newtonian, Convection dominated, Injection moulding, ALE. 

1. INTRODUCTION 

Numerical modelling of incompressible flows with the standard Galerkin method, i.e. the traditional 
finite element method, the element-free Galerkin method et al, often shows oscillatory solutions due 
to two main sources. The first attributes to the mixed character of the incompressible N-S equation 
which results in a reducible mixed formulation in its discretized form and then restricts the choice 
of interpolation spaces for the velocity and pressure fields. The second is associated with the 
convective character of the equations which induces oscillations particularly in convection 
dominated cases. Strategies to circumvent the LBB (or the inf-sup) condition stemming from the 
first problem are, among others, the PSPG formulation of Hughes et al, the Fractional Step 
Algorithm (FSA) originally derived by Chorin, the PGP method of Codina and Blasco. Li and Duan 
[1] further improved the pressure stability of the fractional step algorithm by using the Finite 
Increment Calculus (FIC) theory. The resulting Pressure Stabilized FSA (PS-FSA) is similar to the 
PGP method mentioned above. 

The methods developed to overcome the instabilities associated with the hyperbolic nature of the 
equations emanating from the second problem have also been extensively investigated in the 
literature, such as the SUPG method of Brooks and Hughes and the Taylor-Galerkin method of 
Donea. It is widely accepted that the standard Galerkin method is optimal for self-adjoint operator 
equations which is not the case for the N-S equation due to the presence of the convective term. 
However, the self-adjoint property can be recovered if the N-S equation is derived in terms of 
material (Lagrangian) point instead of spatial (Eulerian) point. This requires the discretization of the 
temporal derivative along the characteristic (the particle trajectory). Based on this idea, Zienkiewicz 
and Codina first introduced into this method the idea of approximating the characteristics by using a 
Taylor expansion and combined it with a split scheme of the fractional step algorithm that results in 
the well-known Characteristic Based Split (CBS) algorithm widely used in computational fluid 
dynamics, such as for viscoelastic flow by Nithiarasu [2]. Codina [3] generalized the derivation of 
the method in the sense that the reference time can be arbitrary within the time step and used it to 
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solve the incompressible N-S equation. However, only the Eulerian description and the explicit 
approximations of the characteristics are used in his derivation and only the Newtonian flow is 
considered in his work. 

The purpose of this paper is to develop a generalized scheme of the CBS algorithm in an ALE 
framework for incompressible non-isothermal non-Newtonian fluid flows. The motivation of using 
an ALE description is that our final goal is to simulate injection moulding problems and we will use 
the ALE technique to track the moving free surface. We give a general derivation for the numerical 
approximation of the characteristics in the ALE description which introduces two parameters into 
the method and combine it with the Pressure Stabilized FSA mentioned above to form the proposed 
scheme. Numerical simulation of the injection moulding process is achieved by using this scheme, 
along with an ALE free surface tracking technique and the adaptive coupled finite element and 
meshfree method for spatial discretizations. 

2. DERIVATION OF THE GENERALIZED SCHEME OF THE CBS ALGORITHM 

Let  tX  be the trajectory of the particle we follow and obviously    nn tt XX 1 . To numerically 
solve the governing equations with the discretization of the temporal derivative along the 
characteristic, for a given physical variable  , we need  approximate   11 ,  nn ttX  and   nn tt ,X  
in terms of   1, nttX  and   ntt ,X  respectively and consequently all the terms of the governing 
equations can be evaluated at the same reference point  tXχ  , where tttt nn   

 is the 
reference time  within the time step ],[ 1nn tt ,   is arbitrarily taken within the range 10  . In an 
ALE method, the motion of the mesh is independent of the motion of the material, i.e. ˆ c u u , 
where c ,u and û  are, respectively, the convective, material and mesh velocities. Therefore, we can 
approximate  1ntX  and  ntX  in terms of χ , as 
          2 2

1 1 n n
n nt t O t t t O t 

           X χ c X χ c  (1) 

where 0  stands for an explicit expression for  1ntX  which is used by Codina [11], and 10    
the implicit ones. From Eq.(1), we can approximate   1 1,n nt t  X  and   ,n nt t X  as 
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              X c X c  (2) 
By using central difference technique, Eqs.(1-2) can be approximated one order higher as 
            

2
21 3

1 1 1 1 1
2 2

n n n n
n

t tt O t      



 
            X χ c c c c  (3) 

       3
2

21

2
2

2
tOttt nnnn

n 





  ccccχX   (4) 

              
2

21 1 1 3
1 1, 1 1 1 1

2 2
n n n n n n n

n n
t tt t O t              

 

 
              X c c c c  (5) 

         
2

1 2 3, 2
2 2

n n n n n n n
n n

t tt t O t        
           X c c c c  (6) 

Based on the PS-FSA, the proposed CBS scheme is obtained by taking the velocity and temperature 
as   and discretizing the momentum and energy equation along the characteristics through Eqs.(1-
6), where the energy equation to compute the temperature has the following form 
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Note that    and   are introduced into Eq.(7) and it can reduce to classical characteristic form by 
setting 1   and 0  . 

3. RESULTS 

The first example is a thermal plane Poisseuille flow problem. Table 1 gives the maximum time 
step sizes maxt allowed by the proposed CBS algorithm with different u  for the velocity-pressure 
field and  T  for the thermal field under different Reynolds and thermal Peclet numbers. Note that 

0.5   and 1.0   correspond to the classical Crank-Nicolson scheme and the classical CBS 
algorithm, respectively. Obviously, the classical Crank-Nicolson scheme can not handle convection 
dominated problems as its maxt  is unacceptably small for problems with high Reynolds or high 
Peclet numbers. The other two schemes can be used for the whole range of the tested cases. Note 
that the scheme with 0.8   allows larger maxt  than the classical CBS algorithm, especially for the 
thermal field where its maxt  is two times of maxt  allowed by the classical CBS algorithm. 

 Re=1 Re=10 Re=10
2 Re=10

3   Pe=1 Pe=10 Pe=10
2 Pe=10

3 

0.1u  0.04 0.04 0.04 0.04  1.0T 

 

0.3 0.3 0.3 0.3 

8.0u  0.05 0.05 0.05 0.05  0.8T 

 

0.6 0.6 0.6 0.6 

5.0u  0.8 0.3 0.03 0.005  0.5T 

 

1.0 1.0 0.001 Hard to 
converge 

TABLE 1. Comparison of maximum time step sizes with different Reynolds and Peclet numbers  

The second example is the thermal 4:1 contraction problem. We run this example by using the 
proposed CBS scheme with 0.8   and the adaptive coupled finite element and meshfree method 
for spatial discretizations. Fig.1 shows the finite element and meshfree coupling region, the 
obtained streamline and pressure field. The solution is smooth and no oscillation is present. Fig.2 
illustrates the isotherms for different thermal Peclet numbers. The shapes of the isotherms agree 
well with the reference results in the literature. 

 
 (a) (b) (c) 

FIGURE 1. The thermal 4:1 contraction problem: (a) Coupling region (black); (b) Streamline; (c) 
Pressure contours 

   
 (a) (b) 

   
 (c) (d) 
FIGURE 2. Isotherm plots for the thermal 4:1 contraction problem: (a) Pe=1; (b) Pe=10; (c) Pe=100; 

(d) Pe=1000. 
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The last example is the simulation of the filling process of a typical mould cavity. Fig.3 shows the 
evolutions of the velocity distributions, the pressure and the temperature contours over the zones 
filled with molten polymer in the mould cavity at different discrete time levels which clearly 
demonstrate the ability of the proposed method for simulating the injection moulding process with 
non-isothermal non-Newtonian molten polymers. 

4. CONCLUSIONS 

A generalized scheme of the CBS algorithm for incompressible non-isothermal non-Newtonian 
fluid flow is developed. The numerical results demonstrate a better performance of the proposed 
scheme than the classical one in a wide range of Reynolds and Peclet numbers. Modelling of the 
injection moulding process with non-isothermal non-Newtonian molten polymers is also achieved 
by using the proposed scheme.  

 

 

 
FIGURE 3. Evolution of the velocity distributions, the pressure and the temperature contours within 

the filled domains. 
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1. INTRODUCTION 

Flows inside differentially heated rotating cavity has wide range of applications in the study of 
geophysical and astrophysical flows as well as in practical engineering applications like 
manufacturing of single wafer crystal for semiconductor industries and numerous metallurgical 
processes. Due to rotation the heat transfer characteristic of the flow becomes complex and thereby, 
makes it very challenging in terms of numerical and experimental investigations.  

It is observed that numerical simulations of rotating cavity flows reported in literature usually 
model the flow in non-inertial (rotating) frame of reference, in which the effect of rotation is 
considered indirectly through source terms (like centrifugal, Coriolis and Euler forces) in the 
Navier-Stokes (NS) equations. Numerical treatment of these source terms can sometime become 
troublesome and tricky, and it remains an area of research till date. We, therefore, consider 
mathematical modelling of the differentially heated rotating cavity problem in inertial frame of 
reference in order to avoid the above source terms. In the later case, the rotation of the cavity 
directly influence the flow and heat transfer phenomena inside it as in the real situation. 

In present study, we simulate an orthogonal rotating cavity (i.e. rotation axis and gravity axis are 
orthogonal to each other) problem [1] using both inertial and non-inertial frame of references. The 
incompressible Navier-Stokes equations in both inertial and non-inertial frames are written in 
Artificial-Compressibility (AC) formulations before discretization. The spatial part is discretized 
using finite volume method based on HLLC-AC scheme [2, 3], whereas time part is discretized 
using dual time stepping. In case of inertial model, Arbitrary Lagrangian Eulerian (ALE) approach 
is used to tackle the moving boundary. 

2. GOVERNING EQUATIONS 

Initially the cavity is rotated at a constant angular speed   about an axis through the centre of the 
cavity. Then, temperatures of two opposite side walls AB and CD are suddenly raised and lowered 
to            and           , while other two opposite walls AD and BC are kept 
thermally insulated (refer to figure 1).  

 
FIGURE 1 (i) Schematic of rotating cavity (ii) Computational mesh.  
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As the gravitational, centrifugal and Coriolis accelerations all lie within the cross-sectional plane of 
the cavity, the problem can be analyzed as a two-dimensional flow problem. Integral form of 2D NS 
equations in artificial compressibility formulation with dual time stepping approach can be written 
for both inertial as well as non-inertial frame of references as 

 
∬

  
   
      ∬

  
 t 
     ∮ [(     ) x  (     ) y] d   ∬    

  
 

(1) 

where lx, ly are direction cosines for face area  , which is enc osing the ce   vo ume  . The 
variab es t and   a re rea  time and pseudo time respective y. The matrices  M,  M in (1) are given as 

   {

    
    
    
    

};    {
     
    
    
    

} 

The expressions for W, Ec, Ev and Gc, Gv for two different frames of reference are given below. 

2.1 Mathematical formulation in inertial frame of reference and discretization. For inertial 
frame of reference, the field vector in equation (1), W=(p, uI, vI, T)T with uI and vI as the component 
of velocity vector, VI. The convective flux vectors are Ec=(U, uIU+p, vIU, uIT)T, Gc=(V, uIV, vIV+p, 
vIT)T; and diffusive fluxes Ev= (0, σxx, σxy, 

  

  
)T, Gv=(0, σyx, σyy, 

  

  
)T; and the source term S=(0, 0, 

 tgΔT, 0)T. The terms U=uI - xt and V=vI - yt, where xt and yt are the grid velocities in x and y 
directions respectively. 

An ALE method is used to take care of moving cavity, where whole grid is rotated as solid body. 
The detailed description of discretization and solution methodology for ALE formulation can be 
found in reference [3]. 

2.2 Mathematical formulation in non-inertial frame of reference and discretization. For non-
inertial frame of reference, the field vector in equation (1), W=(p, ur, vr, T)T with ur and vr are the 
component of velocity, Vr. Note that the velocity vector VI in the inertial frame is related to the 
velocity vector Vr in the non-inertial frame as VI=Vr+(ω x r). The convective flux vectors in non-
inertial frame are defined as Ec=(ur, u2

r+p, vrur, urT)T, Gc=(vr, urvr, v2
r+p, vrT)T; and the diffusive 

fluxes are Ev  ( 0, σxx, σxy, 
  

  
)T, Gv ( 0, σyx, σyy, 

  

  
)T; the source term is 

 

  {

 
          

           (  )   
       (  )

           
           (  )  

       (  )
 

} 

 

In non-inertial frame of reference, the grid is treated as stationary. The detailed description of 
discretization and solution methodology can be found in [2]. 

3. NUMERICAL RESULTS 

In this paper the numerical results obtained over a non-uniform mesh (refer figure 1) of 70 x 70 grid 
points, which has the minimum spacing of 0.0032 near the walls and maximum spacing of 0.04 near 
the center of the cavity, is presented. The HLLC-AC upwind scheme [2, 3] with dual time stepping 
approach is applied to both inertial and non-inertial formulations to simulate the mixed convective 
heat transfer in square cavity undergoing orthogonal rotation. The numerical codes developed have 
been validated with the results from reference [1]. 

As boundary conditions on all the four walls of the rotating cavity, (u,v)wall=(xt,yt)wall is specified in 
case of formulation with inertial frame of reference, whereas (u,v)wall=0 is specified for formulation 
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with non-inertial frame of reference. Temperature T is specified at the walls AB and CD, while 
Neumann boundary conditions   

  
   are applied for the other two walls AD and BC (refer figure 

1). The pressure gradients are specified at all the wall depending on the angular rotation of the 
cavity wall. The space-average Nusselt number at both the cold and hot walls has been calculated 
using the relation, 

  ̅̅ ̅̅   ∫
  

  

 

  
           where   is temperature difference at wall and n is unit normal to the wall 

In the present work, two test cases [1] are studied with two different sets of Prandtl no. (Pr), 
Rayleigh no. (Ra), Rotational Rayleigh no. (Raw), Taylor no. (Ta) and rotational speeds (ω).  

3.1 Case I: Pr=0.01, Ra=107, Ta=8.16, Raw=1.02 x 102. In this case, a low rotational speed with 
non-dimensional value ω*  ωH2/α 0. 014 is considered, where H is width of cavity and α is thermal 
diffusivity.  Due to the small rotational speed and large difference in Ra and Raw, the thermal 
buoyancy is the dominating force over the rotational buoyancy and Coriolis force. Figure 2 shows 
the comparison of numerical results produced by the present code using inertial frame of reference 
with ALE formulation, and the code using non-inertial frame of reference. The results from 
literature [1] is also shown here for validation. It can be seen that the isotherms (normalized 
temperature difference contour) show thin boundary layers near isothermal walls with stable 
stratification of the core. 

Figure 3 shows time histories of the spatially averaged Nu for hot and cold wall, which clearly 
shows oscillatory heat transfer at both the walls with a temporal mean value of 9.0 approximately 
for non-inertial frame and that of Baig et al. [1] results, whereas near 10 for inertial frame of 
reference.   

 
FIGURE 2 Comparison of temperature difference contours at time t=0.4 (a)ALE (Present), (b)Non-

inertial frame (Present), (c) Baig et al. [3] for Ra=107,Ta=8.16,Raw=102. 

 
FIGURE 3 Comparison of time history of Nusselt number, Nu (a)ALE (Present), (b)Non-inertial 

frame (Present), (c) Baig et al. [3] for Ra=107,Ta=8.16,Raw=102. 

3.2 Case II: Pr=0.01, Ra=105, Ta=8.16 x 104, Raw=1.02 x 104. In this case, higher value of 
rotational speed with ω* 1.428 is used. The isotherms (normalized temperature difference 
contours), shown in figure 4, depict thick boundary layers near the isothermal walls with stable 
stratification in the core of the enclosure. The time histories of the spatially averaged Nu obtained 
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by present calculations shown in figure 5 indicate that the flow becomes asymptotically steady with 
steady heat transfer at walls with a value of Nu=2.96 for non-inertial frame and Nu=3.13 for inertial 
frame, which is contrary to the results given in reference [1].  

 
FIGURE 4 Comparison of temperature difference contours at time t=0.8 (a)ALE (Present), (b)Non-

inertial frame (Present), (c) Baig et al. [3] for Ra=105, Ta=8.16 x 104, Raw=1.02 x 104 

 
FIGURE 5 Comparison of time history of Nusselt number, Nu (a)ALE (Present), (b)Non-inertial 

frame (Present), (c) Baig et al. [3] for Ra=105, Ta=8.16 x 104, Raw=1.02 x 104 

4. CONCLUSIONS 

The flows inside differentially heated rotating cavity have been successfully simulated by solving 
Navier-stokes equation in artificial compressibility formulations using both inertial and non-inertial 
frames of references. The results are compared with that available in literature and found to be in 
good agreement, except for time history of Nusselt no. for the case II. Since non-inertial 
formulation may face computational difficulties in case of stiffness of the source terms for high 
rotations, an alternate formulation with inertial frame of reference is tried out in the present work. 
The alternate formulation for the rotating cavity is found to produce excellent results and hence, 
recommended for future applications. 
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ABSTRACT 

Thermal analyses of one-, two- and three-layered micro-channels have been carried out. Finite 

element method (FEM) and asymptotic waveform evaluation (AWE) are used to obtain the transient 

response equation of one node. When the transient response graph is smooth and monotonic 

towards steady state temperature, AWE approximates this graph well even at small number of 

moments. However, if the transient response graph shows irregular pattern towards steady state 

temperature, higher number of moments are required to obtain a good approximation. Results 

indicate that three-layered micro-channel gives significant reduction in thermal resistance. 

Key Words: Asymptotic waveform evaluation, finite element, micro-channel, local transient 

solution. 

1. INTRODUCTION 

The solution using conventional FEM gives the transient response of all nodes of the domain. If the 

transient response of only a few nodes is of interest, the computational effort for the other nodes 

will be wasted. Therefore AWE can be employed if the transient responses of only a few nodes of 

interest are required. 

2. MODELLING AND FORMULATIONS 

The schematic sketch and modelling of one-layered micro-channel is given in Figure 1. Two- and 

three-layered micro-channels are described in Figure 2. In total, there is one configuration for one-

layered, two for two-layered and four for three-layered micro-channels. The heat transfer governing 

equations of the micro-channel (wall and fluid) are given in Eqs. (1-4). 
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FIGURE 1. One-layered micro-channel: nomenclatures, nodes and elements used to represent the 

simplified model 

 

 

 

 

 

 

FIGURE 2. Two-layered micro-channels: parallel-flow and counter-flow, and three-layered micro-

channels: parallel-low (Type 1) and counter-flows (Types 2, 3 and 4) 

The symbols used Eqs. (1-4) are explained as follows: k, T, ρ and c are thermal conductivity, 

temperature, density and specific heat of the wall respectively; Tf, ρf and cf are the temperature, 

density and specific heat of the fluid respectively; W and H are the width and height of channel, h is 

the heat transfer coefficient, τ is the time, ��  is the fluid mass flow rate in the channel. 

Next, the formulations are divided into two parts: FEM followed by AWE. The micro-channels are 

discretised into nodes and elements as shown in Figure 3. The discretisation is independent on the 

flow configuration, which will be taken into consideration only when applying the boundary 

conditions. The FEM formulation is based on the Galerkin’s weighted residual [1]. Eqs. (1-4) are 

then combined to become Eq. (5). 

The AWE formulation applies Laplace transform to Eq. (5) to obtain Eq. (6). After that the 

formulation is separated into parts: zero-state response (ZSR) and zero-input response (ZIR). Each 

response computes its respective poles and zeros which are combined to form a general equation as 

shown in Eq. (7). Eq. (7) is the transient response of the temperature of the node of interest. 

Detailed FEM and AWE formulations are available in reference [2]. 
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3. RESULTS AND DISCUSSIONS 

The accuracy and convergence of AWE are first presented in Figures 3, using one-layered micro-

channel as the subject of verification. Figure 3 (left) shows that the transient response has 

converged even with small number of moments. The transient response is also verified using 

conventional FEM. Figure 3 (right) shows the effect of increasing the number of unit cells 

(discretisation of the domain) towards the accuracy of the results. It also shows convergence at 

small discretisation (10 unit cells). 

 

 

 

 

 

    

 

FIGURE 3. One-layered micro-channel: transient response of the maximum temperature for different 

number of moments n and different number of unit cells NUC. 

 

 

 

 

 

 

 

FIGURE 4. All micro-channels: steady state temperature profile of bottom wall centreline  

Table 1 shows the comparison of thermal resistance of all micro-channel models using the same 

total flow rate in each micro-channel. Thus the flow rate in each channel of a two-layered micro-

channel is half of one-layered; three-layered micro-channel is one third of one-layered. 

Qualitatively, one-layered gives the highest thermal resistance and the lowest for three-layered. 

Between two-layered micro-channels, parallel-flow is higher than counter-flow. Among the three-

layered, parallel-flow is the highest, followed by Type 2, Type 4 and Type 3 of counter-flow.  
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Quantitative discussion focuses on the percentage of reduction of thermal resistance relative to one-

layered. Generally, three-layered has higher reduction compared to two-layered, except the case of 

two-layered counter-flow having a higher reduction (42.0%) compared to three-layered parallel-

flow (40.2%). Even so, the performance of two-layered counter-flow micro-channel is comparable 

to any types of three-layered micro-channels based on the thermal resistance values. 

Micro-channel 

Thermal 

resistance, 

K/W 

Reduction of thermal 

resistance relative to 

one-layered, % 

One-layered 0.497 - 

Two-layered parallel-flow 0.338 32.0 

Two-layered counter-flow 0.288 42.0 

Three-layered parallel-flow (Type 1) 0.297 40.2 

Three-layered counter-flow (Type 2) 0.273 45.1 

Three-layered counter-flow (Type 3) 0.267 46.3 

Three-layered counter-flow (Type 4) 0.271 45.5 

TABLE 1. All micro-channels: comparison of thermal resistance using the same total flow rate  

Figure 4 shows the steady state temperature profile of bottom wall centreline. One-layered micro-

channel has the highest temperature profile which increases from fluid inlet to outlet. For two-

layered micro-channels, the temperature profile of counter-flow is more evenly distributed than 

parallel-flow, based on the observation that the inlet temperature of parallel-flow is lower than 

counter-flow, but is reversed at the fluid outlet. The same pattern can be observed when comparing 

among the three-layered micro-channels, where counter-low Type 4 is the most evenly distributed. 

4. CONCLUSIONS 

The convergence of the transient response equations using AWE have been verified by using 

different number of moments n to obtain the equations. The graphs generated have been shown to 

be close to each other even for small n. Meanwhile the accuracy has also been checked with the 

transient response graph using the FEM results, and AWE graphs have shown to be close to FEM 

results. The percentage of reduction in thermal resistance for two- and three-layered micro-channels 

relative to one-layered are also calculated. Having analysed the temperature of the micro-channels 

at various key locations, a decision can be made regarding the type of micro-channel suitable to be 

used in practice with similar operating conditions. With the incorporation of AWE in the analysis, 

the results can be obtained fast by solving the temperature only at these locations and not the whole 

domain. 
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ABSTRACT 

In this work, steady-state thermosolutal convection in a square cavity, subject to horizontal 
temperature and concentration gradients, is numerically simulated by using a new efficient matrix 
inversion free numerical procedure. The algorithm is based on the explicit Artificial 
Compressibility (AC) version of the Characteristic Based Split (CBS) scheme, opportunely 
stabilized by the authors to solve Double Diffusion problems. Rectangular cavities with different 
aspect ratios, subject to Dirichlet and Neumann boundary conditions, have been considered as 
computational domain. The thermal and solutal buoyancy forces acting on the fluid have been taken 
into account in case of aiding and opposing flow condition. All the results presented in this paper 
have been validated against the numerical and experimental data available from the literature. 

Key Words: AC-CBS, stability, double diffusive, mass transfer, concentration. 

1. INTRODUCTION 

Many numerical and experimental studies on fluid flow in cavities have been carried out during the 
last decades. A number of these studies deal with natural convection induced by only temperature 
gradients. More recently, a great deal of attention has been posed on fluid motion generated by 
buoyancy forces due to simultaneous temperature and concentration gradients. This phenomenon, 
known as Double Diffusion (DD), is encountered in many physical problems, such as geothermal 
reservoirs, contaminant flow in rooms, vapour transport, food processing, alloys solidification. 

First experiments on double diffusive flows of electrolyte solutions in shallow enclosures [1] 
showed that multilayer flow structures can be observed. Weaver and Viskanta [2] studied the DD 
problem of binary gases in cavities, both experimentally and numerically, by using the finite 
difference discretization technique. Nithiarasu et al. [3] employed for the first time the generalized 
porous medium model to study DD in saturated porous media, by using a finite element semi-
implicit solver to obtain the numerical solution. Unsteady DD natural convection in the laminar and 
turbulent flow regime has been studied numerically in an asymmetric enclosure, a typical 
configuration of greenhouse-type solar stills, by employing a finite volume code, based on a 
successive over-relaxation method [4]. Recently, Chen et al. [5] investigated the influence of the 
buoyancy forces ratio and aspect ratio on DD in vertical annuluses, by using a Lattice Boltzmann 
(LB) model. Very recently Chen and Du [6] carried out a numerical study of entropy generation for 
turbulent DD natural convection in rectangular cavity, by employing a large eddy simulation (LES) 
based LB method. 

To the authors' knowledge, fully explicit finite element based solutions of DD natural convection in 
rectangular cavities are still not available in literature. The present work introduces for the first time 
the Artificial Compressibility (AC) Characteristic Based Split (CBS) scheme, based on the finite 
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element discretization procedure, for the solution of natural convection driven by buoyancy forces 
due to both temperature and concentration gradients. Rectangular cavities with different aspect 
ratios have been taken into account, imposing both temperature and concentration values and 
thermal and solutal fluxes on the vertical side walls. Horizontal walls have been considered 
impermeable and adiabatic, or linear temperature variation has been imposed on them. All the 
presented results have been validated against other numerical or experimental data available from 
the literature. 

2. GOVERNING EQUATIONS 

The non-dimensional form of the equations solved in this paper for DD natural convection, in 
vector notation, can be written as: 

 j j

j jt x x
 
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The non-dimensional form of the deviatoric stress is defined by 2Pr
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The scales and the parameters used to derive the above non-dimensional equations are: 
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3. STABILITY ANALISYS FOR THE AC-CBS SCHEME FOR DOUBLE DIFFUSION 

The stability analysis of the conservation equations, performed on the basis of the order of 
magnitude of all the terms [7], is here extended to efficiently solve DD problems. The stability 
conditions are derived by observing that the order of magnitude of each term must be smaller than 
one. This approach is applied to the steps of the AC-CBS scheme. The time-step restrictions 
obtained by adopting the present analysis are shown in the followings: 
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4. RESULTS 

The AC-CBS scheme is successfully applied to the benchmark problem of DD natural convection in 
rectangular cavities with different aspect ratios, imposing temperature and concentration values on 
the vertical walls, and employing different boundary conditions on horizontal walls (see Figure 1), 
for which numerical solutions are available in the literature [2, 5]. The thermal and concentration 
buoyancy forces have been considered in both aiding and opposing flow. In the first case, the 
buoyancy ratio R  assumes a positive value, while, in the second case, a negative one. Figure 2 

shows the non-dimensional concentration profiles at mid-height of the cavity for an aiding 
buoyancy case and non-dimensional temperature profiles at three x-coordinate of the cavity for an 
opposing buoyancy case. The present results compare excellently with the numerical and 
experimental solutions available in the literature [2, 5]. Figure 3 present the concentration and 
temperature contours for the same case of Figure 2 (right). 

 
FIGURE 1. Computational domain and boundary conditions employed: (left) adiabatic horizontal 

walls; (right) linear temperature on horizontal walls. 

 
FIGURE 2. DD natural convection: (left) concentration and (right) temperature profiles. 
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FIGURE 3. DD natural convection: (left) concentration and (right) temperature contours. 

5. CONCLUSIONS 

The new stabilized AC-CBS scheme has been presented for the solution of Double Diffusion 
natural convection in cavities with different aspect ratios. Aiding and opposing buoyancy forces 
have been taken into account in the present simulations. The influence of different boundary 
conditions on the fluid dynamic, thermal and solutal field in the cavity has been analyzed. The 
present results have been successfully verificated and validated against numerical and experimental 
data available from the literature for well known problems. 
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ABSTRACT 

Natural convection flow in a square cavity has been analyzed using finite volume based numerical 
procedure. The enclosure used for flow and heat transfer analysis has been bounded by adiabatic top 
wall, constant temperature cold vertical walls and a horizontal bottom wall. The bottom wall is 
subjected to convective heat transfer ranging from 0.1 W/m2 K to 10,000 W/m2 K. The analysis is 
carried out for Rayleigh numbers ( Ra ) ranging from 103 to 107 and Prandtl number varied from 0.7 
to 17. It is observed from this study that the effect of changes of parameters have been observed for 
heat transfer coefficient upto 50 W/m2 K. The average Nusselt numbers increases monotonically 
with Rayleigh number. As the Biot number increases, the average Nusselt number increases and 
reaches an asymptotic value equal to the average Nusselt number value obtained with the constant 
temperature boundary condition for a given Rayleigh number. 

Key Words: Natural Convection, Cavities, Convective Boundary Conditions, Numerical Heat 
Transfer. 

1. INTRODUCTION 

Natural convection in a square cavity is prototype of many problems of engineering interest. 
Applications include design of energy efficient buildings, cooling of electronic cabinets, operation 
and safety of nuclear reactors, cryogenic storage, furnace design and others. 

In the open literature, detailed review of natural convection in cavities is dealt in Ostrach [1]. 
Corcione [2] studied natural convection in a rectangular cavity heated from below and cooled from 
top as well as sides for variety of thermal boundary conditions. Numerical results are reported for 
several values of aspect ratios and Rayleigh numbers. Lo et al. [3] studied convection in cavities 
heated from left vertical wall and cooled from opposite vertical wall with both horizontal walls 
insulated using differential quadrature method. 

Numerical results are reported for several values of width-to-height aspect ratio of enclosure and 
Rayleigh number. Basak et al. [4] have studied the effect of uniform and non uniform temperature 
at bottom wall on natural convection in a square cavity for Rayleigh numbers from 103 to 105 using 
Penalty finite element method. They reported that the uniform temperature gives more heat transfer 
than the non-uniform temperature. Natural convection flows in a trapezoidal enclosure with uniform 
and non-uniform heating of bottom wall is investigated numerically by Natarajan et al. [5]. 
Sinusoidal heating of the bottom wall produces greater heat transfer rate at the center of the bottom 
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wall than uniform heating case for all Rayleigh numbers. However, average Nusselt number shows 
lower heat transfer rate for non-uniform heating case. 

Nomenclatures: 

 TBi  Thermal Biot number u  x- component of velocity, m/s 
 g  Acceleration due to gravity, m/s2 v  y- component of velocity, m/s 
 h  Heat transfer coefficient, W/m2 K Greek Symbols 
 k  Thermal conductivity, W/m K   Thermal diffusivity, m2/s 
 L  Length of the cavity, m   Volume expansion coefficient, K-1 
 Nu  Local Nusselt number   Dimensionless temperature 
 Nu  Average Nusselt number   Kinematic viscosity, m2/s 
 p  Dimensional pressure, Pa   Density, kg/m3 
 rp  Prandtl number   Stream function, m2/s 

 2R  Regression coefficient Subscripts 
 Ra  Rayleigh number b  bottom wall 
 T  Temperature, K S  side wall 
 cT  Temperature of cold vertical wall, K T  thermal 

Recently, Aswatha [6] performed numerical study of natural convection in enclosures subjected to 
different temperature boundary conditions at bottom wall for cavity aspect ratio ranging from 1 to 3. 
It is found that the average Nusselt number is increased with increase of aspect ratio at bottom wall 
and it is decreased for side walls.  

The objective of this study is to investigate the flow and heat transfer characteristics in a square 
cavity subjected to convective boundary conditions varying from 0.1 W/m2 K to 10,000 W/m2 K at 
the bottom wall, symmetrically cooled side walls with constant temperature and insulated top wall 
(see Fig. 1) for the range of Ra  from 103 to 107. rp  ranging from 0.7 to 17.08. 

 
FIGURE 1. Geometry of the cavity 

2. MATHEMATICAL FORMULATION 
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The governing equations for natural convection flow are conservation of mass, momentum and 
energy equations which can be written as in Basak et al. [4]: 

No-slip boundary conditions are specified at all walls and ambient temperature is Th. 

Bottom wall:   2,0 0.1W / m KT x   to 210000W / m K  

Top wall:       , 0T x H
y





 (1) 

Sidewalls:         0, , cT y T L y T   

The fluid is assumed to be Newtonian and its properties are constant. Only the Boussinesq 
approximation is invoked for the buoyancy term. The changes of variables are as follows: 
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2.1 Numerical Procedure 

In the present investigation, the set of governing equations are integrated over the control volumes, 
which produces a set of algebraic equations. The PISO (Pressure Implicit with Splitting of 
Operators) algorithm developed by Issa [7] is used to solve the coupled system of governing 
equations. The set of algebraic equations are solved sequentially by ADI. A second-order upwind 
differencing scheme is used for the formulation of the convection contribution to the coefficients in 
the finite-volume equations. Central differencing is used to discretize the diffusion terms. The 
computation is terminated when all of the residuals reach below 10-5. The computations are carried 
out using the FLUENT 6.3 commercial code. 

2.2 Nusselt Number 

In order to determine the local Nusselt numbers on the cold walls, the temperature profiles are fit 
with quadratic, cubic and bi-quadratic polynomials and their gradients at the walls are determined. 
It has been observed that the temperature gradients at the surface are almost the same for all the 
polynomials considered. Hence only a quadratic fit is made for the temperature profiles to extract 
the local gradients at the walls to calculate the local heat transfer coefficients from which the local 
Nusselt numbers are obtained. Integrating the local Nusselt number over each side, the average 
Nusselt number for each side wall is obtained as 

0

H

S SNu Nu dy   (3) 

3. RESULTS AND DISCUSSION 

3.1. Verification of the Present Methodology with Experimental Results 

The grid independence study has been made with different grids and biasing to yield consistent 
values [3]. The present methodology is compared with Lo et al. [3], Different grid sizes of 31×31, 
41×41, 51×51 and 61×61 uniform mesh as well as biasing have been studied. The grid 41×41 
biasing ratio (BR) of 2 (The ratio of maximum cell to the minimum cell is 2, thus making cells finer 
near the wall) gave results identical to that of 61×61 uniform mesh. In view of this, 41×41 grid with 
biasing ratio 2 is used in all further computations.  
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Computations are performed for cavity configuration with aspect ratio 5 for which the experimental 
results are available in the form of a correlation for the average Nusselt number as a function of the 
Rayleigh number as in equation 4, 

 
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33
1.289

0.193max 1 ,0.0605
1 1800 /

RaNu Ra
Ra

 
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FIGURE 2. Comparision of present results with 
that of Elshebiney et al. [8]. 

FIGURE 3. Non-dimensional temperature 
variation for Ra =105. 

The average Nusselt numbers computed by the present code for values of Ra  ranging from 103 to 
107 are compared with the correlation of [4] in Fig. 2. The agreement is found to be excellent with a 
maximum discrepancy of about 3%, which validates the present computations. 

Fig. 3 shows the variations of non-dimensional temperature at the bottom wall. It can be observed 
that as BiT increases, the temperature at the bottom wall will tend to be more uniform. 
Simultaneously as BiT increases, it will approach a non-dimensional temperature of 1.0 at the 
bottom wall. 

  

FIGURE 4. Variations of Nu  for side wall for 
different convective boundary conditions at 

bottom wall. 

FIGURE 5. Nu  variation with TBi  for different 
Rayleigh numbers. 
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Fig. 4 shows the variation of average Nusselt number for the case of convective boundary 
conditions for side walls. It can be observed that the average Nusselt number increases with 
Rayleigh number as expected. The average Nusselt numbers remain invariant for h ≥ 50 W/m2 K 
for the range of Ra  studied. Fig. 5 shows the average Nusselt number variation with the Biot 
number. As the Biot number (heat transfer coefficient) increases, the Nusselt number increases and 
reaches an asymptotic value equal to the Nusselt number value obtained with the constant 
temperature boundary condition for a given Ra, as expected. 

 

TABLE 1. Correlation of Nu  with Ra  for side wall. 

Table 1 show the correlations developed and error involved for side wall. The range of convection 
domination is different for different thermal boundary conditions. The conduction domination 
occurs up to Ra  ≤ 104. The maximum error involved in correlating average Nusselt number with 
Rayleigh number is less than 0.6 % in the range of Ra studied. 

4. CONCLUSIONS 

The following conclusions have been observed during the present study. 

i) It is observed that the heat transfer characteristics like temperature variations, temperature 
contours, stream function contours, local and average Nusselt numbers remains same for 
h > 50 W/m2 K. 

ii) The contours of stream functions and isotherms are symmetric about vertical central line. 

iii) The average Nusselt number increases monotonically with increase of Ra  for side wall. 
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iv) It observed that as BiT increases, the temperature at the bottom wall will tend to be more 
uniform. 

v) It is seen that as BiT increases, it will approach a non-dimensional temperature of 1.0 at the 
bottom wall. 
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ABSTRACT 

In the present paper, the results of the Artificial Compressibility version of the Characteristic Based 
Split algorithm (AC-CBS) are analysed for both forced and natural convection incompressible flows. 
A dual time-stepping procedure is used to recover the real transient solution. The true transient term 
is discretized explicitly up to the fourth order of approximation, allowing the adoption of larger true 
time steps, and resulting in a more robust and efficient algorithm. 

Key Words: Natural convection, Cavity, Vortex shedding, Transient problems. 

1. INTRODUCTION 

Fully explicit time step schemes are becoming popular for the study of transient behaviour of both 
compressible and incompressible fluid-dynamic problems due to their simplicity and increasing 
robustness [1-4]. Since density variation is negligible in many fluid problems, the time term in the 
mass conservation equation can be ignored. In such a case, the explicit incompressible flow 
calculation can still be performed by replacing the density term by an equivalent pressure term 
which is related to density via an Artificial Compressibility (AC) parameter [1]. Unfortunately, 
many of the standard AC schemes available in literature present convergence or accuracy issues and 
a proper stability analysis becomes then crucial. In the present paper the performance of the AC 
version of the Characteristic Based Split algorithm (AC-CBS) [2] is discussed for transient 
problems. On the basis of the stabilization approach presented by the authors in some of their recent 
papers [3], a new stabilization constraint has been derived for the transient term. The use of the 
third and fourth order approximations for the transient term allowed the adoption of larger real time 
steps, resulting in a more robust and efficient algorithm. 

2. DUAL TIME-STEPPING PROCEDURE FOR A REAL TRANSIENT SOLUTION 

The governing equations for incompressible flows [2] have been solved numerically by using the 
AC-CBS algorithm, which is based on the temporal discretization along characteristics, and 
standard Galerkin spatial discretization procedure [1]. Application to the CBS of the principle of 
recovering the transient solution has been proposed only recently [1,4]. Since the artificial 
compressibility parameter makes the solution reliable only when steady state condition is reached, 
the dual time-stepping approach splits a problem into several instantaneous steady states. The true 
transient term is added to the first or third step of the CBS algorithm [1,4] and is usually written to 
get a second order of approximation over the real time step size: 
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where   represents the real time step size, n is the pseudo time step level and ui is the velocity. 
Nevertheless, when severe pseudo time steps restriction are adopted, significant limitation is also 
imposed to the real time step size in order to get an adequate accuracy. Such a limitation can be 
reduced employing a four-points third order approximation: 
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or a five-points fourth order approximation: 
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The explicit nature of the true transient term introduces a limitation on the pseudo time step size to 
ensure the required stability of the method. On the basis of the order of magnitude analysis [3] it has 
been derived that 4t     when a second order of approximation is adopted, 3 20t     for a 
third order of approximation, and 3 32t     when a fourth order of approximation is employed. 
At the same time, the admissible maximum real time step size depends on the pseudo time step in 
order to ensure an adequate accuracy of the method. As a consequence, the choice of the 
computational grid size represents a crucial issue. In fact, very refined grids result in very small 
pseudo time-step sizes, reducing the scheme accuracy when large true time step size is adopted. 

3. RESULTS 

Vortex Shedding behind a circular cylinder 
The first benchmark case analysed in this paper is the vortex shedding behind a circular cylinder. 
The computational domain, boundary conditions and the results in terms of x-velocity contours are 
available in FIGURE 1. FIGURE 2 presents the variation with time of the vertical velocity component 
at the Q-point (FIGURE 1), obtained by employing a dual time-stepping based on second, third and 
fourth order true time approximation and for a real time step size of 0.166 (left) and 0.083 (right). 
Results have been compared to data from literature [5] in terms of amplitude and frequency of 
oscillations. For 0.166   and when the three-point second order approximation is employed, 
oscillations start later and their amplitude is smaller if compared to reference data [5]. For the same 
real time step size, oscillations start earlier when higher order of approximation is employed and 
also their amplitude increases, resulting in a better agreement with the reference data. When 

0.083  , second order scheme substantially reproduces the results obtained using the third order 
approximation for 0.166   (so still underestimates the oscillations amplitude), while the four-
point approximation presents a good agreement with [5] in terms of both oscillations frequency and 
amplitude when 0.083   is adopted. Results obtained when the fourth order of approximation is 
used are also in good agreement with reference data, even though the stability restrictions on the 
pseudo time step resulted in a larger number of iterations for each instantaneous steady state 
condition, resulting in a larger computational time with respect to the third order of approximation 
approach. These results confirm that the use of real time higher order of approximation allows 
significant reduction of the true time steps number for a given temporal interval under investigation. 

 
FIGURE 1. Vortex shedding behind a circular cylinder: computational domain and boundary 

conditions (left) and x-velocity contours (right) at a real time of 500. 
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FIGURE 2. y-velocity at the Q-point (FIGURE 1) for 0.166   (left) and 0.083  (right). 

 
Buoyancy driven enclosure 
Performance of the AC-CBS for transient problems has been investigated for a buoyancy driven 
enclosure problem. The computational domain and the boundary conditions imposed are available 
in Figure 3 (left). The enclosure aspect ratio H/W is equal to 8. The gravity vector is directed in the 
 

 
FIGURE 3. Buoyancy driven enclosure problem. From left to right: problem definition, 

computational grid, temperature contours at a real time of 2, 4, 10 and 500. 

negative y-coordinate direction. The calculations have been performed for Prandtl number  Pr=0.71 
and Rayleigh number  Ra=3.4×105, using a computational grid composed by 2626 nodes and 5000 
triangular elements (Figure 3). The obtained results, in correspondence of a statistically steady state 
condition, have been compared to data available in [6] at the point 1 (Figure 3). In particular, the 
results obtained from the AC-CBS scheme using a second and third approximation order and for a 
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real time step size of 0.1 and 0.01, have been compared to the mean x-velocity and temperature, 
together with their oscillation amplitudes. From the obtained results, it can be observed that the use 
of the third order of approximation allows a better agreement with the results obtained by most of 
the authors considered in [6], especially in terms of oscillation amplitude for both velocity and 
temperature. It should be pointed out that the data available in [6] present a significant dispersion. 
For instance, the mean velocity value at point 1 ranges from 0.05400 to 0.06537 for different 
authors, while the mean temperature value ranges from 0.264820 to 0.275000. However, as 
mentioned, the present data are in good agreement with the most commonly found values. 
 

Corresponding author 1u  '1u  1  '
1  

Christon-II (Ref. 8 of [6]) 0.065370 0.064320 0.267100 0.050040 
Ambrosini (Ref. 4 of [6]) 0.060800 0.080000 0.275000 0.050000 
Comini-I (Ref. 1 of [6]) 0.059800 0.074540 0.265440 0.056920 
Bruneau (Ref. 9 of [6]) 0.059630 0.066160 0.268500 0.051380 
Le Quéré (Ref. 22 of [6]) 0.056356 0.054828 0.265480 0.042740 
Chan-II (Ref. 7 of [6]) 0.059290 0.083100 0.264820 0.063580 
Kim (Ref. 5 of [6]) 0.054000 0.000480 0.265000 0.000260 
AC-CBS 2nd order approx. 0.1   0.0569 0.0493 0.2660 0.0392 
AC-CBS 2nd order approx. 0.01   0.0589 0.0630 0.2661 0.0492 
AC-CBS 3nd order approx. 0.1   0.0580 0.0569 0.2658 0.0450 
AC-CBS 3nd order approx. 0.01   0.0594 0.0661 0.2662 0.0514 

TABLE 1. Comparison of AC-CBS results calculated at point 1 (Figure 3) with reference data 
available in [6]. 

4. CONCLUSIONS 

The paper investigates the performance of the Artificial Compressibility version of the 
Characteristic Based Split algorithm (AC-CBS) for the solution of unsteady flow problems with 
higher order approximation of transient terms, discretized up to fourth order. The results are in good 
agreement with literature data, even for large real time step size when higher order of 
approximation is employed, reducing the number of time iterations needed. 
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ABSTRACT 

The present paper describes the application of computational fluid-dynamics (CFD) for the analysis 
of melting process in a cylindrical enclosure heated from the side. The 2D model is based on a 
finite-volume numerical procedure that adopts the enthalpy method to take in account the phase 
change phenomenon. The time-dependent simulations show the melting phase front and melting 
fraction of the PCM and incorporate the fluid flow in the liquid phase. The obtained temperature 
profiles are compared to a set of experimental data available on a web site for public access. The 
results show that during the melting process natural convection within the PCM has non negligible 
effects on the behavior of the system. The paper also discusses the effects on the phase-change 
processes of the main operating conditions, including inlet temperature and mass flow rate of the 
heat transfer fluid. 

Key Words: Phase change, CFD, Natural convection, Melting 

1. INTRODUCTION 

Thermal energy storage plays a key role when is necessary to store excess energy that would be 
otherwise wasted and to match demand and supply. This is an important problem in renewable 
energy systems and cogeneration systems. Latent heat storage systems are able to store heat at 
nearly constant temperature, corresponding to the phase transition temperature of the phase change 
material (PCM) [1]. On the other hand, the main disadvantage is represented by the low thermal 
conductivity of many PCMs, causing poor charging and discharging rates. Therefore the advance of 
LHTS requires the understanding of heat transfer in the PCM during the phase transition. The aim 
of this work is to solve transient complete conservation equations for the melting process occurring 
in a vertical cylindrical enclosure . In particular the buoyancy-driven fluid motion within the melted 
PCM is explicitly computed. The results provide a detailed description of the heat transfer process 
occurring in the system. 

2. MAIN BODY 

The experimental set up of Jones et al. [2] is here considered, as shown in Figure 1. The phase 
change material (PCM) is placed inside a cylindrical shell made of polycarbonate, an acrylic base 
and an acrylic block on the top. The outer surface of the cylinder is kept at a constant temperature 
by immersion in a hot water bath. Therefore uniform temperature TH on the cylinder can be adopted 
as boundary condition for use in a numerical model. The top of the cylinder can be assumed 
adiabatic due to the presence of the acrylic block. Finally, Jones et al. [2] imposed a fixed 
temperature TB of 32°C along the acrylic base. The PCM chosen is a paraffin wax: n-eicosane, The 
wax is initially at ambient temperature (Ti = 23°C). At the start of the computation  the outer 
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surface cylinder temperature is set to TH. The resulting heat flux conducted through the wall causes 
PCM melting. The charging process is completed when PCM is completely liquid. 
Three thermocouple racks are placed inside the PCM, as depicted in Figure 1. Each rack contain six 
thermocouples. Temperature measurements are made available by Jones et al. [2] on a public web 
site.   

 
FIGURE 1. System geometry and Thermocouples positions [2]. 

The governing equations for the transient analysis of the melting of the phase change materials 
include Navier-Stokes equation, the continuity equation and the energy equation. Density variation 
due to phase change is neglected; the Boussinesq approximation is applied. Thus density change 
within the liquid PCM which drives natural convection in the liquid phase is considered in the body 
force terms. Governing equations used here for the PCM are [3]: 

Continuity: 
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Momentum: 
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Energy: 
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where   is the density,  ⃗  the velocity of the liquid PCM,   is the pressure,   the dynamic viscosity, 
   the gravity vector,   the thermal expansion coefficient,    the reference temperature. In order to 
deal with the phase change problem, the enthalpy-porosity approach has been used since it does not 
require and explicit tracking of the solid-liquid interface [3]. The presence of the solid or liquid 
phase is instead monitored by using a quantity known as liquid fraction γ. The enthalpy-porosity 
formulation treats different phases as porous media by means of the last term of the right hand side 
of Eq. (2). The computational constant   is a small number typically around 10-3 to avoid the 
division by zero and Amush is the mushy zone constant which describe how steeply the velocity are 
reduced to zero when the material solidifies. The value here used for the computations is 105 kg/(m3 
s). The modeling has been conducted by using a finite-volume CFD code. In this particular 
application a segregated solver has been used to address the problem. SIMPLE algorithm has been 
used to solve the pressure-velocity coupling. Furthermore, the LHTS system geometry allows to 
adopt a 2D axial-symmetric model. 
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3. RESULTS 

The different scenarios have been considered corresponding to TH = 70°C, 55°C and 45°C for sake 
of simplicity a detailed analysis of the CFD results is presented for the case characterized TH = 70°C. 
Figure 2 illustrates the comparison between the numerical and experimental melt front positions at 
three different times. It can be observed that the melt layer thickness varies significantly along the 
vertical direction: This behavior indicates that buoyancy-driven currents play an important role in 
the upper part of the system.  It is clear from Fig. 2 that buoyancy currents enhance the melting 
process starting from the top of the cylinder. As time progress, melting front moves downward 
where conduction heat transfer play a dominant role for a longer time. The agreement between 
numerical and experimental melt front position is quite good. Some discrepancies are observed at 
early time, this can be in good part attributed to the interactions between PCM and the pipes 
constituting the thermocouples racks. 

 
FIGURE 2. Melt front evolution. 

Figure 3 illustrates streamlines and temperature contours obtained by the numerical model at the 
same times considered in Figure 2. Streamlines pattern allows to understand the role of natural 
convection in the liquid PCM: the molten liquid rises upward along the cylinder wall and the solid 
PCM, while the colder liquid moves downward along the solid PCM. Consequently a buoyancy 
driven vortex can be observed which moves downward as time passes. This fluid-dynamics 
structures promotes the PCM melting since it enhances the heat transfer between the hot wall and 
the solid-liquid interface; thus natural convection plays a major role in the system here considered. 
Furthermore, from the streamlines distribution is also possible to observe that buoyancy is not 
particularly marked where liquid PCM has already reached the axis of the cylinder. In absence of 
natural convection the melting process is controlled by thermal-diffusion. As a consequence, at 
early stages of the melting process temperature contours are more aligned with the x-axis. This is 
more evident in the lower part of the cylinder where natural convection is less relevant. 

 
FIGURE 3. Streamlines and temperature contours. 
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As the buoyancy starts to affect the melting process, thermal stratification can be noticed. Vertical 
temperature gradients are observed in the proximity of the region where the vortex is located. 
Where PCM melting is complete, further energy is stored as sensible heat. Consequently liquid 
PCM temperature raises up to wall temperature. 
Time-dependent variations of computed temperature and the experimental results for three 
thermocouples are compared in Figure 4: good agreement is achieved in the details of the melting 
process. In each plot reported in Fig. 4 a sharp temperature increase can be observed at different 
time frames depending on the position considered. This phenomenon is due to the passage of the 
melting front through the thermocouple position. Some discrepancies can be observed in the bottom 
part of the cylinder (position B3), at this position the numerical prediction of melt front progression 
is slower compared to experimental data.  

 
FIGURE 4. Comparison of computed and experimental temperatures inside the PCM. 

4. CONCLUSIONS 

In this paper the melting process occurring in a cylindrical enclosure is studied. A paraffin wax is 
considered as phase change material (PCM) and water acts as heat transfer fluid. The analysis is 
conducted by means of a 2D axial-symmetric CFD model. In particular buoyancy-driven fluid flow 
is fully solved within the PCM domain. Temperature and phase fields are also computed by means 
of the numerical model. The comparison between numerical results and experimental data available 
in literature reveals a good agreement. The results indicate that only very early stages of the 
charging process are dominated by conduction heat transfer. During the later stages, melting is 
affected significantly by natural convection. It can be concluded that the numerical modelling of 
latent heat storage systems should carefully take in account the effect of buoyancy in order to 
correctly predict system behaviour. 
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ABSTRACT 

In this work, we examine the potential advantages of the choice of a CBS scheme for patient-
specific modelling. With a timely solution often sought, it is necessary to consider both the 
computational implementation and accuracy trade off of each scheme. From the initial results, it is 
clear that the semi-implicit scheme can produce solutions at a marginally greater accuracy in a 
significantly reduced (7x) time 

Key Words: Parallelisation, Computational Fluid Dynamics, CBS, Domain Decomposition.  

1. INTRODUCTION 

Patient-specific modelling is a complex and time consuming operation. When investigating 
problems such as atherosclerosis, it is however necessary in order to deliver the pertinent wall shear 
stress field. Thus, the scheme employed for modelling the blood flow must deliver a timely solution. 
Recent work [1] has utilised the explicit scheme due to the ease and efficiency of parallelisation.  

The characteristic based split (CBS) schemes employed in this work has become well established in 
the field [2]. Although the schemes have been previously compared in two dimensions [3], this 
work is intended to assess the three dimensional behaviours of the relevant scheme, assessing both 
accuracy and computational runtime in benchmark problems, before application to a patient-specific 
problem. The scalability of the two schemes in parallelisation is also contrasted for an identically 
subdivided domain.  

2. NUMERICAL SCHEMES 

The CBS approach adopted in this work, starts with a solution to an intermediate velocity field. This 
intermediate velocity field is then corrected, once the pressure field is obtained from a pressure 
(continuity) equation. It is in the determination of the pressure field that the semi-implicit and 
explicit approaches differ. In the explicit scheme, the concept of artificial compressibility (AC) is 
introduced [4] along with local timestepping as an iterative mechanism. To recover transient 
solutions in this approach, a dual time-stepping technique must be employed.  

 

2.1 Semi-implicit CBS scheme 

Ignoring third and higher order terms, the three steps of the CBS scheme are defined respectively as  
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A numerical solution to the second step of the semi-implicit scheme is determined using a 
preconditioned conjugate gradient solver.  

2.2 Explicit CBS-AC scheme 

The three steps for the explicit approach are given below. As can be seen, the first step is identical 
in both cases, however with the use of a dual timestepping mechanism, the third step includes an 
additional component.  
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where   is the real time step. 
 iU  can be calculated using the backward differentiation formulae 

(BDF). For a 3rd order BFD, this is  
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In the above equation the nth term denotes the solution from the previous pseudo time step and mth 
term denotes the solution from the respective mth real time level. Due to its implicit nature, no time 
step restrictions are placed on the real time step.  

2.3 Time step calculation 

In both schemes, the time step employed is subject to time step limitations. In the semi-implicit 
scheme, a global time step value must be determined. In both cases, however, it is first necessary to 
compute the local time step. The local time step is determined using  

 ( )c dt min t t     (8) 

where the diffusive component is defined as  
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where the convective component of the local time step is defined as  
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for the semi-implicit scheme and  
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for the explicit approach. The element size h  can either be determined using  
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where eA  is the area of the element and oppL  denotes the opposite edge length. An alterative 
method of calculating the local element size using the stream line direction can also be employed.  
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where pN  is the number of nodes within the element, r  is a local node, S  is the unit vector in the 

direction of local velocity at node r  and rN  represents the shape function.  

Whereas the explicit scheme utilises the local timestep as a means of accelerating convergence to a 
numerical solution, the semi-implicit scheme utilises the minimum value of the local time step as a 
global time step.  

3. COMPUTATIONAL IMPLEMENTATION 

The explicit CBS scheme requires no solution of simultaneous equations and as such is readily 
parallelisable. The Jacobi preconditioned conjugate gradient solver utilised in the semi-implicit 
scheme is also straightforward to parallelise. The computational codes were written in Fortran 90 
and parallelisation was undertaken using MPI, with domain decomposition carried out prior to the 
CFD analysis.The parallel implementation, as mentioned, utilises MPI in a single program multiple 
data (SPMD) format. Only information on interface nodes is passed between processors when 
necessary, reducing delays due to data transfer. The implementation of both schemes demonstrates 
linear speedup as the number of processors increases.  

4. NUMERICAL SIMULATION 

A typical benchmark utilised to examine the accuracy and robustness of a scheme is the transient 
flow around a cylinder at Re=100 in 3D. Some selected results are shown in Figure (1) and further 
results will be discussed in the presentation. Shown in Figure (1a) is 1u contours at the non-
dimensional real time of 150 for the semi-implicit case. In Figure (1b) the vertical velocity 
component is shown for the exit midpoint downstream of the cylinder. From this, it is possible to 
calculate the Strouhal number. In the semi-implicit case the error in the Strouhal number was 4% 
(compared to experimental solution of 0.16667) and 6% in the explicit case. With further mesh 
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refinement these errors should decrease significantly. It is in the computational run times that the 
semi-implicit scheme stands out. The explicit computation took 7x longer to achieve a solution of 
less accuracy.  

 

 

 

 

 

 

 

 

FIGURE 1. a) Horizontal Velocity Contours b) 3U Velocity Component 

5. CONCLUSIONS 

This short paper outlines two alternative methods that can be parallelised in order to achieve timely 
solutions for biomedical problems. From initial results, the parallelised semi-implicit scheme has 
significant speed advantages over the explicit CBS scheme when running transient simulations. 
Work is ongoing in the analysis of further problems and model refinement.  
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ABSTRACT 

In this work we use data from Direct Numerical Simulations (DNS) of a passive scalar field in 
forced homogenous and isotropic turbulence to gain some insight on the origin of intermittency. 
The Navier-Stokes (NS) and passive scalar conservation equation are solved in a 

   

L3-periodic box 
with a classic pseudo-spectral approach implemented in MATLAB, exploiting the efficiency of the 
latest FFTW libraries and multithreading capabilities. The code has been extensively validated 
against several numerical and experimental results available in literature. Our analysis will focus on 
the case of a unitary Schmidt number scalar in a turbulent flow for 

  

Rel = 50  and 

  

Rel = 70, 
respectively solved with 963 and 1283 grid points. Classic results regarding inertial-range 
intermittency are reproduced such as non-Gaussian behaviour of passive scalar statistics, loss of 
local isotropy, multi-fractal scaling of scalar structure functions. Also, a preliminary Lagrangian 
analysis, used to test the classical theories of Taylor and Richardson, reveals disagreement only in 
the dissipation range (small-scales anomalies). A new interpretation of intermittency is proposed 
here based on the loss of regularity of the evolution equation of the scalar gradient; the 
unboundedness of the scalar gradient magnitude is not ruled out by the mathematical properties of 
the scalar conservation equation.   

Key Words: Scalar transport, Intermittency, Isotropic turbulence. 

1. INTRODUCTION  

Recent progress in the field of the passive scalar has shown that, when it is introduced into a 
sustained turbulent field, the classical return-to-isotropy model suggested by the Kolmogorov-
Obukhov-Corrsin (KOC) theory breaks down for a wide range of Reynolds numbers [1]. The 
evolution of the scalar concentration field, is governed by well-known conservation laws 
yielding a linear PDE in . In spite of the linearity of such equation, when the transporting velocity 
field is turbulent, isosurfaces of scalar concentration stretch and fold decreasing the contribution of 
the large scales to the scalar variance, progressively transferring it to smaller scales [2]. In this 
process the scalar gradients can grow (despite the monotonicity of the scalar conservation equation) 
and local discontinuities can arise in the gradient field, influencing the passive scalar 
phenomenology. Kraichnan (1994, [3]) has shown that even when the velocity field is strictly 
Gaussian (non-intermittent and statistically self-similar), the transported passive scalar field exhibits 
several anomalies including loss of isotropy at the smallest scales and inertial range intermittency. 
These features are visible both in statistical quantities such as skewness and kurtosis, and in 
instantaneous events. The loss of local isotropy is testified by the presence of order-one derivative 
skewness (in the scalar field), ramp-cliff structures in the passive scalar signals and large fronts 
separating sharply `hot' and `cold' regions as well as sub-linear scaling of the high-order structure 
functions exponents. Exponential tails in the passive scalar gradients and passive scalar differences 
PDFs (present both in the dissipation and inertial range), independently of the velocity field 
probabilistic structure, are also a signature of this phenomenon. 
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2. MAIN BODY  

The aim of the present work is exploiting numerical simulations (as well as theoretical results for a 
the governing PDEs) in order to assess whether the NS equations in their incompressible form are a 
suitable model to study intermittency effects. The possible presence of discontinuities in a turbulent 
flow may threaten the regularity of the solution. However, these irregularities are not contemplated 
by the incompressible model. Also, being the passive scalar dynamics driven by the velocity field, 
we investigate if the monotonicity property is still satisfied. In the limit of zero diffusivity, by re-
writing the passive scalar conservation equation in the Lagrangian form, we show that monotonicity 
is verified, as each particle transports the same (constant) value. However, if turbulent mixing is 
present, no one can guarantee that particles transporting very different values can end up, at a 
certain time, one next to the other. In such a case, even if the transport equation seems rather 
straightforward to manage, we should question the derivability of such equation. We therefore 
suggest to search for entropic equations which allow us to asses rigorously the limits of the 
mathematical model in spite of the obvious phenomenology. In the first step of this analysis we 
shall consider the governing equation for the scalar gradient magnitude:  

 

As we can see, even if the passive scalar energy must decay in time, the scalar gradient can still 
sustain itself due to the additional term, indicated with a box on the left-hand side. This term could 
cause local discontinuities in the passive scalar gradient field, which can alter the structure of the 
passive scalar field itself generating intermittency phenomena and therefore is responsible of the 
non-Gaussianity of the passive scalar gradient PDFs. 

We developed a Matlab code in order to verify these speculations in the framework of the classic 
turbulence modelling via the incompressible NS model. Our numerical model is based on a 3D 
pseudo-spectral approach, implemented in MATLAB in a triply-periodic box. A linear forcing term 
(i.e. a mean gradient in the x1 direction with and B as the constant mean gradient intensity for the 
scalar and velocity field, respectively) has been added on the right-hand side of the momentum 
equations, solved for the velocity fluctuations only. Non-linear terms are treated with the 3/2 de-
aliasing rule. Initial conditions are pseudo-randomly generated in the spectral space satisfying the 
divergence-free constraint; the linear forcing guarantees that the stationary state is independent of 
the initial condition [4]. Time-advancement scheme is a fractional step method with a third-order, 
memory-saving RK for the prediction step.   

3. RESULTS 

All statistics have been extracted in a statistically steady time range of 80 turnover times for both 
simulations. The initial parameters are presented in Table 1.  

 

TABLE 1. Simulation parameters 

The same parameters have been used for both the velocity and the scalar field so that the respective 
equations are identical except for the pressure gradient term. This will allow to isolate the intrinsic 
differences of the two fields. Only the most relevant results are shown here.   
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First of all, strong non-Gaussian behaviours are present in time and space derivatives of and u1, as 
visible in the exponential tails of PDFs in Figure 1. In particular, we notice that the passive scalar 
exhibits a more intermittent behaviour in both simulations, and that intermittency effects increase 
with the Reynolds number. On the other hand, PDFs of and u1 appear perfectly Gaussian (not 
shown), and this supports our hypothesis that non-Gaussian behaviours in the gradient field are due 
to the additional term appearing in scalar gradient equation. 

 

FIGURE 1. PDFs of space derivatives 

Intermittency effects extend also in the inertial ranges, despite the rather low Reynolds numbers 
investigated here. These are evident in the PDF of the scalar differences (not shown). At small 
scales non-Gaussian behaviours are prevalent, and there is a fast tendency towards Gaussianity as 
for larger scales. This result is consistent with the calculated scalar intermittency exponents (not 
shown) for these cases that are slightly lower than values present in literature (that, however, refer 
to much higher Reynolds numbers). 

 

FIGURE 2. ‘Hot-cold’ fronts aligning along the mean gradient direction (arrows direction)  

Loss of isotropy at small scales is also evident. Statistics at small scales depend in fact on the 
particular direction, as the passive scalar derivative skewness is of order one along the mean 
gradient direction and of order 

   

Rel
-1 (KOC theory) along the orthogonal directions. Indeed, we 

have found a scalar derivative skewness of 1.5 in the N=963 simulation, and 1.4 in the N=1283 

simulation. Another proof of small-scale anisotropy is given by presence of ‘hot-cold’ fronts which 
originate in the passive scalar field along the mean gradient direction. In Figure 2 an isocontour of 
the mean field is reported, and we see that the front becomes more marked as Reynolds number 
increases. 
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Moreover, our results are in good agreement with literature for what concerns the anomalous 
scaling. Skewness of the scalar differences function tends to a plateau of order one at small scales, 
while the kurtosis of the same function tends to the Gaussian value of 3 only at large scales (not 
shown). Moreover, plotting the scaling exponents V n in function of the order n  we see perfect 
agreement with results in figure 11 of [1]. 

Finally, a preliminary Lagrangian analysis has been carried out to compare our predictions with the 
theories of Taylor for the diffusion of a single particle and Richardson for the diffusion of two 
particles [4]. The paths of 50 particles have been analyzed with starting positions inside a sphere of 
a radius corresponding to half the Kolmogorov length scale. Our results are in good agreement for 
middle and large scales. However, at small scales, our results differ a lot from prediction of 
Richardson theory, as we can see in Figure 3. We speculate that this is the result of existing 
anomalies at small scales, but more accurate simulations and at higher Reynolds are needed to 
assess this. 

 

 

 

 

 

 

FIGURE 3. Relative distances covered by particles at small scales. Dotted lines represent Richardson 
theory predictions for a=1, a=1.5 and a=2. 

4. CONCLUSIONS 

We have performed a study on intermittency effects with DNS of a unitary-Schmidt-number scalar 
in a turbulent flow for 

  

Rel = 50  and Rel = 70 . Classic results regarding inertial-range 
intermittency are reproduced such as non-Gaussian behaviour of passive scalar statistics, loss of 
local isotropy, multi-fractal scaling of scalar structure functions. A new approach is proposed here 
based on the interpretation of intermittency in terms of loss of regularity, at smallest scales, of the 
evolution equation of the scalar gradient. We designate, as a successful pathline to follow, the 
analysis of the boundedness properties of the scalar gradient transport equation which shows 
different regularity properties than the scalar concentration equation itself, from which it originates.  
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ABSTRACT 

In the present paper the results of the Artificial Compressibility version of the Characteristic Based 
Split algorithm (AC-CBS) and the one equation Spalart-Allmaras (SA) turbulence model are 
presented for incompressible turbulent flows. The proposed model has been employed for the 
simulation of a turbulent flow in a street-canyon. The one-equation SA model is expected to be 
advantageous in term of CPU time, if compared to the commonly employed two-equation 
turbulence models for the simulation of complex three-dimensional turbulent flows in urban areas. 

Key Words: Fully explicit, Finite Elements, Vortex. 

1. INTRODUCTION 

Microscale Computational Fluid Dynamics (CFD) models have become an efficient simulation tool 
for many engineering applications. In the last period air quality prediction in indoor environments 
and urban areas has become of great interest. In fact, traffic pollution in urban areas represents the 
major concern for public health, since emissions from non-traffic sources have been constantly 
reduced [1]. Especially in low ventilation areas, human activities led to pollution levels much higher 
than the admissible limits. Also, it has to be considered that even for relatively high ambient wind 
conditions the building aggregates represent artificial obstacles to the wind flow, causing stagnant 
conditions in the city. A typical configuration is the so-called street canyon, formed along a street in 
densely built urban areas [2]. The turbulent behaviour of the flow requires an adequate turbulence 
model to be coupled to the mass, momentum and energy conservation equations. Despite 
considerable progress in the last century in understanding turbulence behaviour in both 
compressible and incompressible flows, still a significant research activity is needed since many 
aspects of the problem are supposed to remain unresolved for the foreseeable future [3]. 
Over the last years, CFD using Reynolds Averaged Navier-Stokes (RANS) have become a standard 
simulation tool for the investigation of atmospheric flow and pollutant dispersion, and one of the 
most used turbulence model is the well known two equations  model. In the present paper, the 
one equation Spalart-Allmaras (SA) model is proposed for the solution of a two-dimensional street-
canyon problem. The governing equations are solved fully explicitly by employing the Artificial 
Compressibility (AC) Characteristic Based Split (CBS) algorithm [4]. All the terms of the partial 
differential equations have been stabilized on the basis of a order of magnitude analysis [4]. The 
obtained results have been compared to the experimental and numerical data available in the 
literature and the proposed model has been proven to be robust and reliable. The analysis of 
different RANS models characteristic does not represent the objective of this paper. The use of a 
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one-equation model is expected to be advantageous in terms of computational requirements when 
complex three-dimensional problems are investigated. 

2. GOVERNING EQUATIONS 

In the present paper, incompressible viscous flow of a single phase fluid in forced convection 
turbulent regime is mathematically described through the RANS equations of motion, written in the 
follows in conservative non-dimensional form. 
Mean-continuity 
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Where iu  is the averaged velocity, p is the pressure, Re represents the Reynolds number and T  is 
the turbulent eddy viscosity. The scales and parameters used to derive the above non-dimensional 
equations and the constants of the SA model are available in the literature [3]. 

3. THE NUMERICAL PROCEDURE 

The set of Partial Differential Equations (PDEs) presented in the previous section has been solved 
numerically by using the Artificial Compressibility Characteristic Based Split (AC-CBS) algorithm, 
which is based on the temporal discretization along characteristics, and spatial discretization 
procedure based on standard Galerkin. The core of the algorithm is based on three successive steps 
that are well described in the literature [3-5]. In addition to the basic AC-CBS steps, a fourth step is 
here added to explicitly solve the SA scalar equation at each time step. The required stability is 
achieved deriving the time-step limit for each term of the SA equation on the basis of an order of 
magnitude analysis [4]. 

3. RESULTS 

Turbulent flow past a backward facing step 
The correctness of the obtained results has been proved by comparison with the numerical and 
experimental data available in the literature. One standard test case is the turbulent flow past a 
Backward Facing Step (BFS). The computational domain and the boundary conditions employed 
for the simulations are available in Figure 1(a). The simulations have been performed using an 
unstructured grid composed by 33726 triangular elements, refined in correspondence of the solid 
walls. All the domain dimensions are normalized with respect to the step height. The velocity 
profile at the inlet section, located at a distance of four times the step height from the step itself, is 
obtained from experimental data from Denham et al. [6]. For the Spalart-Allmaras model a fixed 
value of 0.05 of the eddy viscosity is prescribed at the inlet section, while the scalar turbulent 
variable is set to zero on the walls. The velocity field obtained for Re=3025 is available in Figure 
1(b), while the velocity profiles at a distance of two and four times the step height form the step are 
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reported in Figure 2, compared to the experimental data form Denham et al. [6], showing a good 
agreement with the experiments. 
 
Two dimensional simulation of a street-canyon 
The term "Street Canyon" (SC) refers to a relatively narrow street with buildings along both sides. 
The dimensions of a street canyon are usually expressed by its aspect ratio H/W, where H is the  
 

 
(a) 

 
(b) 

FIGURE 1. Turbulent flow over a BFS: (a) problem definition; (b) x-velocity contours. Re=3025. 

  
FIGURE 2. Turbulent flow over a BFS: velocity profiles compared to experiments. Re=3025. 

 
(a) 

 
(b) 

FIGURE 3. Turbulent flow in a SC: (a) problem definition and boundary conditions; (b) x-velocity 
field and streamlines. Re=50000. 
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FIGURE 4. Turbulent flow in a SC: x- velocity profiles compared to experiments. Re=50000. 

height of the canyon and W is its width. In this paper a street canyon with an aspect ratio equals to 
0.5 has been considered. The computational domain and the boundary conditions employed are 
available in Figure 3(a). A known velocity profile obtained from experiments [7] has been imposed 
at the "AB" section. An horizontal velocity equal to 1 is imposed to the "BC" side, while no slip 
condition has been assumed for the "DEFGHA" boundary. The simulations have been performed 
for a Reynolds number, referred to the H dimension, equals to 50000. The horizontal velocity field 
and the streamlines are reported in Figure 3(b), while the horizontal velocity profiles compared to 
the experiments [7] are available in Figure 4. Form the obtained results, it is evident that the 
proposed model is able to reasonably predict the velocity field in a street canyon, offering the 
advantage of a lower computational cost, referred to the commonly used two-equations models. 

4. CONCLUSIONS 

In the present paper the performance of the Artificial Compressibility version of the Characteristic 
Based Split algorithm (AC-CBS) and the one-equation Spalart-Allmaras (SA) model are 
investigated for turbulent incompressible flows The results are in good agreement with the 
experiments from the literature. The use of the SA model is expected to significantly reduce the 
CPU time for complex 3D problems, compared to the commonly employed two-equations models. 
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ABSTRACT 

This paper presents two-dimensional numerical simulations of combustion of an air/methane 
mixture in porous materials using a mathematical model that explicitly considers the intra-pore 
levels of turbulent kinetic energy. Transport equations are written in their time-and-volume 
averaged form and a volume-based statistical turbulence model is applied to simulate turbulence 
generation due to the porous matrix. A cylindrical porous combustor is analyzed, in which the 
mixture flows inside it in the axial direction, being the flue gases ejected through the lateral surface. 
Combustion is modelled via a unique simple closure. For high excess air, the flame front moves 
towards the lateral exit of the burner. Also, increasing the inlet flow rate for stoichiometric mixture 
pushes the flame out of the porous material. 

Key Words: Porous Media, Turbulent Combustion. 

1. INTRODUCTION 

The advantages of having a combustion process inside an inert porous matrix are today well 
documented in the literature [1-8], including a recent review on lean-combustion porous burners 
[9]. Hsu et al (1993) [10] points out some of its benefits including higher burning speed and 
volumetric energy release rates, higher combustion stability and the ability to burn gases of a low 
energy content. Driven by this motivation, the effects on porous ceramics inserts have been 
investigated in Peard et al (1993) [11], among others. 

Turbulence modeling of combustion within inert porous media has been conducted by Lim & 
Matthews (1993) [12] on the basis of an extension of the standard k-ε model of Jones & Launder 
(1972) [13]. Work on direct simulation of premixed flames, for the case when the porous dimension 
is of the order of the flame thickness, has also been reported in Sahraoui & Kaviany (1995) [14]. 

The objective of this paper is to present a mathematical model for simulation of reacting flows in 
porous materials. 

2. MATHEMATICAL MODEL 

The fundamentals of the mathematical model used here is presented in detail in the open 
literature [15], and for that only the basic equations are presented next. They read: 

0. =∇ Duρ  (1) 
where, Du  is the average surface velocity (also known as seepage, superficial, filter or Darcy 
velocity) and ρ  is the fluid density. Equation (1) represents the macroscopic continuity equation 
for the gas phase. 
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where the last two terms in equation (2), represent the Darcy and Forchheimer contributions. The 
symbol K  is the porous medium permeability, 55.0=Fc  is the form drag coefficient, ip〉〈  is the 
intrinsic (fluid phase averaged) pressure of the fluid, µ  represents the fluid viscosity and φ  is the 
porosity of the porous medium. 

Turbulence is handled via a macroscopic ε−k  model given by, 

( ) ( ) iD
i

kD
ii

k

ti
D K

||kckk 〉〈−
〉〈

+∇:〉′′〈−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
〉〈∇⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅∇=〉〈⋅∇ ερφφρρφ
σ

µ
µρ φ uuuuu  (3) 

( ) ( ) ( )

i

i
D

i

k

i

i

D
iiti

D

k
c

K
||cc

k
c

〉〈
〉〈

−
〉〈

+

〉〈
〉〈

∇:〉′′〈−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
〉〈∇⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅∇=〉〈⋅∇

2

22

1

ερφεφρ

ερεφ
σ

µ
µερ

ε

φ

u

uuuu
 (4) 

 
Gas energy: 
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Solid energy: 
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where, VAa ii ∆=  is the interfacial area per unit volume, ih  is the film coefficient for interfacial 

transport, feff ,K and seff ,K  are the effective conductivity tensors for fluid and solid, respectively 
Transport equation for the fuel reads, 
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where i
fum 〉〈  is the mass fraction for the fuel. The effective mass transport tensor, effD , is defined 
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where lSc  and tSc ,l  are the laminar and turbulent Schmidt numbers for species l , respectively, 
and “ef” denotes an effective value. The dispersion tensor is defined such that, 
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fudisp
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ii mm 〉〈∇=〉〈− .Du ρρ  (9) 

In this work, for simplicity, the chemical exothermic reaction is assumed to be instantaneous and 
to occur in a single step. 

3. RESULTS 

 The problem here analyzed consists in simulating turbulent flow and thermal fields in a radial 
porous combustor, which is depicted in Figure 1a. The mixture of methane and air enters though a 
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central hole on the left side, of radius m.ri 0170= , permeating in the radial direction across the 
ceramic material. The porous cylinder has length L=0.1m. At the outside radius, R=0.05m, flue 
gases leave the combustor where radiation heat flux is accounted for by considering the difference 
in temperature between the porous matrix and the environment. 

Figure 1.b)  shows the position of the heat generation rate for distinct inlet velocities and for a 
stoichiometric mixture, Ψ=0. In the text to follow, we assume that the heat generation rate is related 
to the flame location. One can see that the flame position moves towards the lateral exit as the inlet 
mass flow rate is increased. At very high rates (uin=75 m/s), the flame opens up and unburnt gases 
leave the combustor. Also, as pressure builds up at the left plate, the flame starts to tilt at positions 
close to left side. 

a)

 

inu

80.=φ

r

x L

R

ir

 

         b)                  

uin=25m/s

uin=75m/s

uin=5m/s

uin=50m/s

 

FIGURE 1 – a) Radial porous combustor, .m.r,m.R,m.L i 017005010 === , b) Effect of inlet 
velocity Uin on the flame front position in the (x,r) plane for excess air Ψ =0. 
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4. CONCLUSIONS 

 This paper presented two-dimensional simulations for a mixture of air and methane burning in a 
porous radial combustor. Results indicate that a much higher power modulation is possible when 
stoichiometric mixtures are burned. Also, although not shown here, as the inlet mass flow rate 
increases, the flame is pushed towards the burner exits and such effect is more pronounced as the 
amount of air increases. 

REFERENCES 

1. Howell, J.R., Hall, M.J., Ellzey, J.L., 1996, Combustion of Hydrocarbon Fuels within Porous 
Inert Media, Progress in Energy and Combustion Science 22 (2): 121-145. 

2. Oliveira A.A.M, Kaviany M., 2001, Non Equilibrium in the Transport of Heat and Reactants in 
Combustion in Porous Media, Progress in Energy and Combustion Science 27 (5): 523-545. 

3. Henneke, M.R., Ellzey, J.L., 1999, Modeling of Filtration Combustion In A Packed Bed, 
Combustion and Flame 117 (4), p. 832-840. 

4. Bouma, P. H., De Goey L. P.H., Premixed Combustion On Ceramic Foam Burners, Combustion 
and Flame 119 (1-2): 133-143 Oct 1999  

5. Babkin Vs., Filtrational Combustion Of Gases - Present State Of Affairs And Prospects, Pure 
and Applied Chemistry 65 (2): 335-344 Feb 1993. 

6. Leonardi S. A., Viskanta R, Gore J.P., Analytical and Experimental Study of Combustion and 
Heat Transfer in Submerged Flame Metal Fiber Burners/Heaters, Journal of Heat Transfer, 125 
(1): 118-125 Feb 2003  

7. Lammers F.A., De Goey, L.P.H, 2003, A Numerical Study of Flash Back of Laminar Premixed 
Flames in Ceramic-Foam Surface Burners., Combustion and Flame 133 (1-2): 47-61. 

8. Mohamad A.A., Ramadhyani S, Viskanta R, 1994, Modeling of Combustion and Heat-Transfer 
in a Packed-Bed with Embedded Coolant Tubes, Int. J Heat Mass Transfer 37 (8): p. 1181-
1191. 

9. S. Wood, A.T. Harries, Porous burners for lean-burn applications, Prog. Energy Comb. Science, 
34 (2008) 667-684. 

10. Hsu, P.-F., Howell, J.R., Matthews, R.D., 1993, A Numerical Investigation of Premixed 
Combustion Within Porous Inert Media, J. Heat Transfer, v.115, p. 744-750. 

11. Peard, T.E., Peters, J.E., Brewster, Buckius, R.O., Radiative heat Transfer Augmentation in 
Gas-Fired radiant Tube Burner By Porous Inserts: Effect on Insert Geometry, Exp. Heat 
Transfer, v. 6, pp. 273-286 (1993). 

12. Lim, I- G., Matthews, R.D., 1993, Development of a Model for Turbulent Combustion Within 
Porous Inert Media, Trensp. Phenm. Therm. Eng., Begell House Inc. Publ., pp 631-636  

13. Jones, W.P., Launder, B.E., 1972, The Prediction of Laminarization with Two-Equation Model 
of Turbulence , Int. J. Heat & Mass Transfer, vol. 15, pp. 301 – 314,  

14. Sahraoui, M., Kaviany, 1995, Direct simulation vs Time-Averaged Treatment of Adiabatic, 
Premixed Flame in a Porous Medium, Int. J. Heat Mass Transfer, v.18, pp. 2817-2834. 

15. de Lemos, M.J.S., 2006, Turbulence in Porous Media: Modeling and Applications, Elsevier, 
Amsterdam, ISBN: 0-08-044491-1, 384 pgs. 

 



 

 

Second International Conference on Computational Methods for Thermal Problems 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 
NATURAL CONVECTION IN A VERTICAL POROUS ANNULUS 

FROM TWO THERMAL SOURCES 
Younghae Do, M. Sankar 

Department of Mathematics, Kyungpook National University, 
1370 Sangyeok-Dong, Buk-Gu, Daegu 702-701, Republic of Korea 

(manisankarir@yahoo.com, yhdo@knu.ac.kr) 
Juan M. Lopez 

School of Mathematical and Statistical Sciences, Arizona State University, 
Tempe, AZ 85287, USA (lopez@math.asu.edu) 

 

ABSTRACT 

The effects of discrete heating on natural convection heat transfer in a vertical porous annulus are 
investigated numerically. The inner wall of the annulus has two discrete flush-mounted heat sources, 
the outer wall is isothermally cooled at a lower temperature, and the top and bottom walls are 
thermally insulated. The governing equations are solved using an implicit finite difference 
technique. The influence of discrete heating on the flow and heat transfer in the porous annulus are 
investigated for a wide range of parameters. We found that the heat transfer rate is always higher at 
the bottom heater. Further, the rate of heat transfer increases with radius ratio (curvature) but 
decreases with Darcy number.  

Key Words: Natural Convection, Discrete Heating, Finite Difference, Porous Medium. 

1. INTRODUCTION 

Natural convection in porous annulus enclosures is of practical interest in many engineering, 
agriculture, geothermal, medical and biological sciences. Examples include the storage of grain, 
transpiration cooling, ground water pollution, food technology, radioactive waste management, and 
certain biological materials [1,2]. Natural convection in a differentially heated vertical porous 
annulus has been investigated widely, owing to its importance in high performance insulation for 
building, porous heat exchangers, and many others applications [3-5]. 

Previous works on natural convection in a vertical porous annulus are limited to uniform heating of 
the inner wall by either isothermal or isoflux wall-heating conditions. However, in many practical 
applications, heating takes place over a portion of one of the vertical walls, where the heating 
segment may significantly affect the heat transport process in the annular enclosure filled with a 
fluid-saturated porous media. Although the annular porous enclosure with discrete heating is 
employed in many practical applications, most studies have been in rectangular enclosures, in 
which the effects of curvature are missing. Here, we examine the effects of isoflux discrete heaters 
on the natural convective flows in a porous annular cavity, and in particular explore the effects of 
curvature. 

2. MATHEMATICAL FORMULATION AND NUMERICAL METHOD 

Consider a cylindrical annular enclosure of inner and outer radii ri and ro, and height h, filled with a 
fluid-saturated porous medium. Two discrete heat sources are placed at the inner wall of the annular 
cavity, while the unheated portions of the inner wall, top and bottom walls are kept at adiabatic. The 
outer wall of the annulus is isothermally cooled at a lower temperature providing a heat sink. The 
lengths of both heaters and the unheated portions of the inner wall are kept fixed at a value of h/5. 
The fluid is assumed to be Newtonian with negligible viscous dissipation and all physical properties 
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are taken to be constant, except for the density in the buoyancy term. Employing the Boussinesq 
approximation, the dimensionless governing equations in vorticity stream function form are: 
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The non-dimensional variables used in the above equations are: 
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The equations (1)-(4) are solved using the Alternating Direction Implicit (ADI) and Successive Line 
Over Relaxation (SLOR) methods. For brevity, the details of the method are not given, and the 
same can be found in [5,6]. 

3. RESULTS 

The range of the modified Rayleigh number 4 )( hRa g q d k   and Darcy number 
2( / )Da K d  considered are 3 710 10Ra  and 6 110 10 ,Da    while the radius ratio 

)( o ir r   is varied over 1 λ10. The Prandtl number (Pr )  and the aspect ratio ( / )A h d  
are held constant respectively at Pr = 0.71 and A=1. In the expressions of Ra and Da, the variables 
g, β, k, υ, κ and K  are respectively the gravity, thermal expansion coefficient, thermal conductivity, 
kinematic viscosity, thermal diffusivity and the permeability of the porous medium. 

Figure 1 shows the streamlines and isotherms inside the porous annulus for Darcy numbers 10-6 and 
10-2, corresponding to the limits of Darcy and viscous flows. At Da=10-6, the resistance from the 
boundary friction is significant and adds to the bulk frictional drag induced by the solid matrix, 
slowing down the convective motion in the annulus. In the limit of Da→0, the Brinkman model 
reduces to the Darcy regime. However, as the Darcy number is increased from 10-6 to 10-2, the 
permeability of the porous medium increases and hence the boundary frictional resistance becomes 
gradually reduced, and in turn the fluid circulation is significantly enhanced. Indeed, increasing the 
Brinkman term implies that the balance between the Darcy term and the buoyancy force in the 
boundary layer is progressively replaced by the balance between a viscous force and the buoyancy 
force. The resulting viscous force increases the velocity at high Darcy numbers. For small Darcy 
number, a circulating flow pattern centred about the middle of the cavity results. As the Darcy 
number is increased, the streamlines show that the meridional circulation is more confined to 
boundary layers on the annulus walls, with the centre of circulation near the outer cylindrical wall, 
where the flow is fastest. Generally, increasing the Darcy number (permeability) helps the flow to 
penetrate deeper into the porous layer. 
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Figure 2 reveals the influence of radius ratio (larger λ corresponds to larger curvature) on the heat 
transfer rate for different values of modified Rayleigh and Darcy numbers. The figure reveals that 
the heat transfer increases with radius ratio for fixed values of Ra and Da. Similarly, for a fixed 
value of λ, the heat transfer rate increases with the modified Rayleigh and Darcy numbers. In 
particular, the rate of heat dissipated from the bottom heater is found to be higher compared to the 
top heater at all radius ratios, Darcy and modified Rayleigh numbers. At small Darcy numbers, the 
fluid flow experiences more resistance, and hence the average Nusselt number is almost flat at all 
radius ratios. It is also observed that the heat transfer rate increases sharply for Da>10-5, while the 
steep increase in the Nusselt number curve is delayed for the top heater. The variation of maximum 
temperature or hot spots at all values of Ra is illustrated in Figure 3 for three different values of Da. 
The maximum temperature appears on the top heater at all values of Ra and Da. However, the 
maximum temperature decreases rapidly with Ra for Da > 10-5, due to enhanced convetion strength. 

4. CONCLUSIONS 

Natural convection in a vertical porous annulus has been numerically investigated in the presence of 
two discrete thermal sources. The results reveal that the rate of heat transfer is higher at the bottom 
heater, while the maximum temperature appears on the top heater. An increase in radius ratio 
(curvature) produces a higher heat transfer in the annulus. Further, the presence of porous medium 
delays the onset of convection in the porous annulus. More results will be presented in the full 
length version of the paper. 

 

              

    
     (a)    (b) 

FIGURE 1. Streamlines and isotherms for Ra=106, λ=2, (a) Da=10-6 and (b) Da=10-2. 
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          (a)             (b) 

FIGURE 2. Effect of radius ratio on the heat transfer rate for different values of (a) Ra and (b) Da. 

     
FIGURE 3. Variation of maximum temperature with different values of Ra and Da. 
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ABSTRACT 

The aim of this work is to investigate the fully nonlinear coupled nonlinear partial differential 
equations governing the steady mixed convection in a 3D porous enclosure are solved numerically 
by Galerkin Finite Element Method (FEM). The forced flow conditions are imposed by providing 
an inlet with injection at the bottom surface and an outlet with suction on the top surface. The free 
convection is induced by a centrally buried isothermal cubical body together with Boussinesq 
approximation on density variable. In view of the large size of the linear systems encountered in the 
3D FE calculations, a numerical scheme based on segregated variable approach is followed to carry 
out the numerical simulations. Detailed numerical computations are carried out for a wide range of 
governing parameters such as Rayleigh Number (Ra), suction/injection velocity (a), suction 
/injection width (D/H), cubical hot object of length Lh, as fraction of the length of the square 
enclosure and the results are analyzed by tracing the isotherms and streamlines on different 2D 
horizontal and vertical cross sections of the domain. Also local heat fluxes along the isothermal 
buried structure are presented in the form of Nusselt Number for different values of the governing 
parameters. 

Key Words: Mixed Convection, Suction/Injection, Porous Medium, Finite Element Method. 

1. INTRODUCTION 

The practical applications of studies in mixed convection are not only vast and diverse but also of 
considerable importance, like in many of the engineering applications such as solar central receivers 
exposed to wind currents, electronic devices cooled by fans, heat exchangers, vented enclosures 
filled with micro spheres, Coal gasification, geothermal heating due to nuclear waste disposal, 
migration of moisture through air contained in fibrous insulations, porous gas burners, IC engines, 
thermal insulation of buildings, environmental chambers, oil extraction which require a detailed 
study on mixed convection process the spatial location of inlet / outlet windows become very vital 
[1-9]. Based on the need for three-dimensional solution, the physical system has been modeled 
mathematically by writing mass and energy balances on a differential volume of a porous medium. 
Darcys law has been used as the force balance equation. The equations are simplified by neglecting 
the temperature dependence of the fluid properties, except for the density in Darcy's equation. The 
equations have been formulated in terms of a vector potential, which is the three dimensional analog 
of the stream function, see Holst and Aziz [9] for reference. System of equations have been solved 
using finite element method in a sparse format by taking advantage of the sparsity of assembled 
mass matrix. Detailed numerical simulations are carried  out by Galerkin finite element method for 
a wide range of parameters such as Rayleigh Number (Ra), suction/injection velocity (a), suction 
/injection width (D/H), cubical hot object of length Lh. Results have been shown in the form of 
Nusselt number, temperature and velocity vector plots. 
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So far not much work has been reported on Darcy mixed convection in a cubical porous enclosure. 
In particular mixed convection in fluid saturated porous enclosure under the influence of 
Suction/Injection effect with a centrally buried isothermal cubical structure which becomes very 
relevant in the context of electronic devices, environmental chamber for bacterial culture 
preservation etc., have not been considered so far. 

2. MAIN BODY 

Fig 1 represents a three-dimensional cubical porous enclosure of length L and a cubical hot object 
of length Lh with a uniform temperature higher than the ambient temperature at the center of the 
enclosure. All the faces of the porous enclosure are assumed at ambient temperature including the 
outlet portion at the top surface. The forced flow conditions are imposed by providing an inlet at the 
bottom of the surface and an outlet with suction at the top of the surface for out flow. It is assumed 
that ‘D’ is the width of the inlet and outlet, H is the height of the Cavity. The inflow is considered to 
be at ambient temperature. We assume x and z co-ordinates to lie on the plane of the paper and y 
coordinate to be in the perpendicular plane. Flow is assumed to be steady and three dimensional. 
Darcy flow model is considered for the momentum equation and Boussinesq approximation for 
density is assumed to be valid for this equation. Using the non-dimensional variables and 
introducing the Boussinesq approximation,     *   

 
(     )} the three-dimensional mass, 

momentum and energy equations for this system can be written as follows in the non-dimensional 
form 
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The appropriate boundary conditions in non-dimensional form are: 
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The velocity components (U, V,W) are given as follows in terms of vector potential,   
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3. RESULTS 
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The above three dimensional FEM scheme based on the vector potential and temperature 
formulation has been developed to simulate the mixed convection in 3-D fluid saturated porous 
enclosures. In view of the large size of the linear systems resulting from the finite element analysis, 
the scheme is evolved in a de-coupled framework, where in one can solve separately for 
components of vector potential function and temperature field. In the current study parallel Bi-CGM 
solver has been used to handle the large scale linear systems resulting from the Finite Element 
formulation of Eq. (1)-(5). First, to check the correctness of the code, solutions have been compared 
and found to be in perfect agreement. Isotherms for the case of convection in a cubical enclosure 
due to bottom heating are considered for Ra = 100. The results are in good agreement with those of 
Zhao et al. [1]. In Fig 2 isotherms on X = Y = Z = 0.5 cross sections of the cubical porous enclosure 
are presented for the cases with increasing size of hot cubical structure. Clearly, the temperature 
fields on each of these cross section remain symmetric about the centrally embedded hot object but 
vary in magnitudes. However the conical nature of the downward facing plume like structure 
gradually changes to a rectangular plume like structure with the increase in the size of the 
embedded hot object. Clearly the isotherm pattern in Fig 3 is very sensitive to the magnitude of Ra. 
With increasing values of Ra a downward stretching plume like structure manifests under the 
bottom horizontal wall and it gets prominent with increasing Ra. The isotherms which are circular 
and centered about the hot body at small values of Ra, get set into interesting complex symmetric 
circulation patterns centered about the plume like structure as Ra increases. This variation in the 
isotherm pattern is fully in tune with the changes noticed in circulation rolls in the flow field. The 
plume manifestation can be attributed to the intensified mixing of hot and cold fluids due to flow 
circulation intensification. 

4. CONCLUSIONS 

3-D mixed convection in a fluid saturated porous enclosure with a hot body embedded at its center 
under I/S effects has been analyzed for various values of Rayleigh number, different sizes of 
isothermal cubical hot objects for different I/S velocities. Prominent circulation zones are seen to 
manifest adjacent to the four vertical faces to the hot object. When Ra < 100 3-D symmetry is 
observed in the flow and temperature distribution fields. A downward drift in the eye of the 
circulations and flow intensification is noticed with the increase in Ra beyond 100. For When Ra > 
100, prominent downward stretching thermal plumes are seen manifest under the embedded hot 
body. 
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FIGURE 1. Porous Enclosure with a Cubical Hot Object in the center with the physical co-ordinates 

 

 
 

FIGURE 2. Isotherm plots while increasing size 
of cubical structure when Ra = 250 for the XY 

plane when (a) Lh = 0.1 (b) Lh = 0.2 (c) Lh = 0.3: 
Corresponding Y Z and XZ plane vector plots are 

in (d-f) and (g-i) respectively 

FIGURE 3. Isotherm plots while fixing a = 0.5, 
Lh = 0.2 on the Y Z plane for (a) Ra = 25 (b) Ra 
= 50 (c) Ra = 100 (d) Ra = 250 (e) Ra = 500 (f) 

Ra = 750 
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ABSTRACT 

The influence of porosity and electrokinetic effects on flow through microchannels is studied in this 
paper. The brinkman model for porous media is modified to take into account electrokinetic effects. 
The model is solved numerically and Debye –huckel linear approximation is used for electric 
potential. 

Key Words: heat transfer,porosity,zeta potential ,flow. 

1. INTRODUCTION 

Micro electromechanical systems involve fluid flow in microchannels. Flow through microchannels 
is important in designing microfluidic devices like cooling system of chips due to their higher heat 
transfer coefficient as discussed by Zhang et al. [1]. In flow through microchannels interfacial 
effects are important. For example, electrolytic flow in microchannels can be different from 
nonelectrolytic flows. The study of flow through porous media has applications in nuclear cooling 
system, geophysics and petroleum engineering. Moreover human lung, small blood vessels are 
examples of flow through porous medium. Hence a numerical analysis of influence of porosity and 
electrokinetic effects is presented here. 

The present work deals with modification of brinkman equations taking into account electrokinetic 
effects and numerically solving them using numerical method. The brinkman model of equations 
for porous media is applied to an infinite parallel channel. Debye –huckel linear approximation is  
used  for electric potential. 

The equations are solved numerically with the following assumptions 

1. The flow is laminar, incompressible, steady, fully developed. 
2. Gravity forces are ignored. 
3. The fluid is Newtonian and its properties are independent of local field strength. 
4. The ions are point charges, with no concentration gradients. 
5. Zeta potential is assumed to be uniform. 
6. Viscous dissipation is neglected. 
7. The fluid is continuum. 

The electrostatic potential Ψ is related to the local net charge density ρ by Poissons equation 

∂2Ψ/∂y2 = -ρ/ε 

Following A.Jain et al. [2] the nonlinear dimensional second order equation is  

d2Ψ/dy2= 2zen/ε sinh(zeΨ/kT) 

which is the boltzmann equation. 

2. DEBYE–HUCKEL APPROXIMATION 
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Debye –huckel parameter k depends only on liquid properties.At small electrolyte concentrations 
sinh can be approximated and equation reduces to 

d2Ψ/dy2=k2Ψ 

The solution of the above equation is 

Ψ = ζ/sinh(k)  sinh(ky) 

Increased zeta potential increases relative charge density of ions near the walls which produces 
higher potential. 

3. SOLUTION OF THE GOVERNING EQUATIONS 

The nondimensional brinkman model equation for the flow through a channel with porous media 
using the non-dimensional parameters is  

d2U/dY2 – σ2U –Qd2Ψ/dY2+Γ = 0 

where σ =a2/Κ,Q=2nzea2ζ/μUL   Γ=-a2/μU. The equations are solved numerically using the 
boundary conditions 

dΨ/dY=dU/dY=0 at Y=0, U= 0,Ψ=ζ at Y=1 

4. RESULTS 

The influence of porous media , electrokinetic effects  and pressure are illustrated in the graphs. The 
presence of EDL decreases the fluid velocity. As porosity increases flow rate decreases further. In 
the presence of porosity higher value of pressure gradient shows that the flow is constant and only 
decreases near the wall. 

Variation of velocity with pressure
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FIGURE 1 Variation of velocity with pressure 
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FIGURE 2 Variation of velocity with electrokinetic effects 
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ABSTRACT 

In this work, fully explicit numerical solutions for heat and fluid flow in cylindrical domains, 
completely or partially filled with a fluid saturated porous medium, are presented. Laminar natural 
convection in a vertical porous annulus and in a vertical annulus with a centrally located 
heat generating rod, and laminar forced convection in a pipe partially filled with a porous 
medium are numerically simulated. Novel stability conditions are carried out for the fully 
explicit Artificial Compressibility (AC) version of the Characteristic Based Split (CBS) algorithm, 
in order to effectively solve the above problems. The results presented in this paper are validated 
against experimental and numerical results available from the literature. 

Key Words: AC-CBS, stability, cylinder, annular, generalized porous medium model. 

1. INTRODUCTION 

Interest in understanding the convective transport processes in porous materials is increasing owing 
to the development of geothermal energy technology, high performance insulation for building, 
drying processes, packed bed chemical reactors, porous heat exchangers, underground disposal of 
nuclear waste materials, food storage, electronic device cooling [1]. Many numerical and 
experimental studies on heat and fluid flow in porous domains have been carried out during the last 
decades. A comprehensive review concerned with this topic can be found in the references [2-4]. 

Laminar natural convection in vertical porous annuli has been widely investigated in the literature, 
both numerically and experimentally. Havstad and Burns [5] used a finite difference technique to 
analyze the heat transfer characteristics in a vertical annulus filled with a porous medium, and 
presented correlations for the heat transfer in the annulus. Natural convection in a vertical porous 
annulus has been studied for isothermal heating [6] as well as by considering a constant heat flux at 
the inner wall [7] for a wide range of Rayleigh numbers, aspect ratios and radius ratios. Prasad and 
Kulacki [6] employed a finite difference discretization technique and a point iterative method to 
solve the system of algebraic natural convection equations. The numerical results were validated 
against experimental data, carried out by building up a proper experimental apparatus and a 
measurement procedure described in reference [6]. 

Forced convection in ducts partially filled with a fluid saturated porous medium has been 
extensively studied mainly in relation with its practical application on heat transfer enhancement 
inside heat exchangers. Mohamad [8] analyzed the steady laminar flow in a conduit fully or 
partially filled with a porous layer for different values of permeability and porous layer thickness. A 
control volume, finite-difference discretization technique is used, and the SIMPLER algorithm is 
employed to solve the equations in primitive variables. The algebraic equations are solved by a line-
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by-line iterative method. Yang and Hwang [9] studied numerically the turbulent heat transfer 
enhancement in pipes partially filled with porous media, by employing a k   turbulence model. 
The conservation equations are discretized by employing a control volume based finite difference 
method. The numerical method used is based on the SIMPLE iterative algorithm. 

To the authors' knowledge, a fully explicit finite element based scheme has not been employed in 
the literature to solve natural convection in porous annuli and forced convection in partially porous 
pipes. For this reason, the authors have further developed the AC-CBS scheme [10] to solve 
axisymmetric problems in fluid and porous domains. In order to obtain a stable and computationally 
efficient solution, the algorithm has been properly stabilized to solve the generalized porous 
medium model in a cylindrical coordinate system. 

2. GOVERNING EQUATIONS 

The non-dimensional form of the equations in a cylindrical coordinate system, solved in this paper, 
can be written as: 

Mass conservation equation 

    1 0r zr u u
t r r z

   
  

  
 (1) 

Momentum conservation equation in r-direction 

 
2

2 2 2

1 1 1
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          
 (2) 

Momentum conservation equation in z-direction 
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fz z z z z
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           

          
 (3) 

Energy conservation equation 

 
2
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
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 (4) 

 
The scales and the parameters used to derive the above non-dimensional equations, written for the 
general case of mixed convection, are: 
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 (5) 

3. AC-CBS STABILITY ANALISYS FOR AXISYMMETRIC PROBLEMS 

In order to solve the generalized porous medium model in axisymmetric domains, the stability 
analysis of the conservation equations, performed on the basis of the order of magnitude of all the 
terms [10], is here presented for a cylindrical coordinate system. The stability conditions are derived 
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by observing that the order of magnitude of each term must be smaller than one. This approach is 
applied to the steps of the AC-CBS scheme. The time-step restrictions obtained by adopting the 
present analysis are shown in the followings: 
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2 2
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1 1
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2 2 1 2
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 (6) 

4. RESULTS 

The axial-symmetric  version of the AC-CBS scheme is successfully applied to the following 
problems: i) natural convection in a vertical porous annulus; ii) forced convection in a pipe 
completely and partially filled with a saturated porous medium. The computational domains and the 
boundary conditions employed for the two problems considered are shown in Figure 1. The present 
results have been validated against numerical, analytical and experimental data available from the 
literature [6, 8], and an excellent agreement has been found. Figure 2 shows the velocity and 
temperature profiles for natural convection in a vertical porous annulus and forced convection in 
partially porous pipe, respectively. All the parameters employed in the present simulations can be 
found in references [6, 8]. 

 
FIGURE 1. Computational domain and boundary conditions employed: (left) natural convection in a 

vertical porous annulus; (right) forced convection in a partially porous pipe. 
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FIGURE 2. Natural convection in a vertical porous annulus (left); forced convection in a partially 

porous pipe (right). 

5. CONCLUSIONS 

The axisymmetric version of the AC-CBS algorithm has been successfully applied to natural and 
forced convection problems in porous and partially porous domains. The stability analysis 
developed for the scheme in cylindrical coordinate system has allowed to efficiently solve 
axisymmetric problems in presence of large source terms. The present results have been validated 
against analytical, numerical and experimental data available from the literature. 
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ABSTRACT 

The gravitational convection or diffusion instability under diffusive mixing in ternary gas mixture 
in a vertical cylindrical channel of finite size is numerically investigated. The arrangement of the 
transition boundaries between diffusion and gravitational convection is defined.    

Key Words: Diffusion, Convection, Instability of Mechanical Equilibrium, Linear Theory of 
Stability, Rayleigh Numbers. 

1. INTRODUCTION 

Experimental measuring the diffusion coefficients in multicomponent gas mixtures is the time-
consuming problem and requires certain level of proficiency from a researcher, particularly, when 
making the diffusion apparatus and devices as well as other necessary equipment. The experiments 
performed previously revealed unknown peculiarities of the multicomponent mass transfer, for 
example, the diffusion instability [1,2] and the circulation of diluent gas in a diffusion channel [3]. 
The study of diffusion instability (anomalous gravitation concentration convection) is of great 
interest for both the mass transfer theory and practical applications. 

The systems with two and more independent gradients or thermodynamic forces exhibit 
complicated behaviour, when the convective flows occur. Such systems are called the systems with 
double-diffusive convection [4]. The stability paradox is characteristic of the systems with double-
diffusive convection. Meanwhile, the instability in the gravity field can be arisen from the stable 
stratification of mass density, i.e. in the case when the density above is less than the one below. The 
process of diffusion instability depends on certain conditions and parameters, for example, pressure, 
concentration, temperature, viscosity, geometry of the diffusion channel etc. [5]. 

2. THE MODEL OF DIFFUSION INSTABILITY 

Various kinetic, thermodynamic and semiempirical approaches to the definition of diffusion 
instability are used in the literature [1-4]. 

Application of the methods of the stability theory [1] made it possible to develop an approach for 
the study of the most general peculiarities to define the arrangement of transition boundaries 
between the diffusion and the concentration gravitation convection. 

The macroscopic flow of the isothermal ternary gas mixture is described by the general system of 
the hydrodynamic equations, that includes the Navier-Stokes equations, equations for conservation 
of the number of particles in the mixture and the components. Taking into account the conditions of 
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where *
ijD are  “practical” coefficients of three-component diffusion.  

The equations (1) are supplemented by the environmental state equation 

 рсс ,21,  ,  constT  , 

relating the thermodynamic parameters entering Eq. (1).  

The method of small perturbations [1,6] is used for solution of the system of Eq. (1). Taking into 
account that at L » r (L, r are the length and the radius of the diffusion channel, respectively) the 
differences in the perturbations of the average 

  and the weight-average u  velocities in the Navier-
Stokes equations is negligible [5]. Then the final system of equations of the gravitational 
concentration convection, which is written in terms of the perturbed dimensionless parameters, 
takes the following form [6]:   
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iiii DP   is the Prandtl diffusion number, *4

iiiii DdAgR   is the Rayleigh partial 
number,  *

22
* DDijij   denote the parameters, which determine the relationship between the 

“practical” diffusion coefficients.   

It is necessary to define exactly the boundary conditions for the solution of the system of Eq. (2). 
Therefore, we have considered the unstable diffusion mixing problem in the cylindrical channel of a 
finite size, which is distinct from the infinite case. 

The equation system (2) is solved by the method given in [1]. As a result, we determine the 
concentration distribution along the length of the cylindrical channel of finite dimensions L, r:   
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In order to determine the monotonous stability boundary of the problem under consideration, the 
third equation of the system (2) can be scalarly multiplied by the vector u and integrated all over 

the volume V of the diffusion channel. This can be done under the conditions, that 0,0 





t
up


. 

Then we have: 

                                               .0221111
2 dVcuRdVcuRdVuu zz
                                         (4) 

3. RESULTS OF NUMERICAL EXPERIMENTS 

Study is carried out for ternary gas mixture H2+N2-CH4. In our experiments, the binary mixture 
density is less than the density of the pure component. Calculations for the system H2+N2-CH4 are 
made at a temperature 298.0 K under the pressure ranging from 1.0 to 5.0 MPa and the 
concentrations of gases in the initial binary mixtures for fractions from 0.1 to 0.9 moles.  

The case describing the mixing of binary mixture H2+N2-CH4 subject to the pressure and the 
various concentrations of light component is shown in Figures 1.a and 1.b. As seen in Figure 1.a, 
the point 3 corresponding to the pressure 2.0 MPa is situated practically at the curve MM. Thus, for 
the system 0.6H2+0.4N2-CH4 the transition into the area of unstable diffusion occurs under the 
pressure above 2.0 MPa. In accordance with Figure 1.b the increase of the hydrogen concentration 
to 0.75 mole fractions results in the transition from the stable area into the unstable one, which 
occurs under the pressure above 4.0 MPa (point 7). According to Figures 1.a and 1.b, the pressure 
increase leads to the fact that the stable diffusion process becomes unstable, but the increase of the 
light component concentration leads to the increase of transition pressure almost by the factor of 
two.      

It follows from Figures 1.a and 1.b that, when changing the pressure, the systems can be both in the 
stable diffusion area and the unstable process one.  

 

 

FIGURE 1. Regions of stable and unstable diffusion for the system H2+N2-CH4.  a) 0.6H2+0.4N2-
CH4; b) 0.75H2+0.25N2-CH4. Symbols ○, ● correspond to data that determine stable and unstable 

states respectively. The calculation is carried out at the pressure values: 1 – Р=1, 2 – 1.5, 3 – 2, 4 – 
2.5, 5 – 3, 6 – 3.5, 7 – 4, 8 – 4.5, 9 - 5 MPa; T = 298.0 K, d = 3.3 mm is the channel diameter; MM 

is a curve of monotonic disturbances, 0 is a curve of the zero density gradient 

Thus, our studies show that the transition from the diffusion region to the unstable diffusion one 
occurs at the certain critical pressure P*. The diffusion occurs in the system at the experiment 
pressure P < P*. 
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Points represented on Figure 1 are calculated by the formulas: 
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,                                        (5) 

where im  is the molecular mass of the i-th component,  311 mmm  , 322 mmm  . 

The full circles correspond to the convective mixing process while the open circles conform to the 
diffusion one. 

It can be noticed that on the plane (R1, R2) the regions exist, where the line MM is located below the 
curve of the zero density gradient. In this area the mixture condition is unstable though the mixture 
density in the lower part of the diffusion channel is more than in the upper one. The physical 
interpretation of instability for the isothermal mixture is the following. The element of the medium, 
which is shifted upwards, enters the mixture of the smaller density, but with the different 
composition. The variance in the interdiffusion coefficients of components results in the transversal 
diffusion of components, which leads to the equalizing of the light component concentration. 
Consequently, its insufficient amount is rapidly compensated. The shifted element becomes lighter 
than environmental and it continues to float up causing the instability [5]. 

4. CONCLUSIONS 

The suggested method of calculation allows one to reveal the areas of both the stable and the 
unstable mass transfer on the Rayleigh number plane in three component gas mixtures depending on 
various thermodynamic parameters. The calculation procedure can be applied to determine 
thermodynamic parameters of gas systems and the geometry of the diffusive channel. The latter has 
an essential impact on the occurrence of the gravitational convection (diffusive instability). The 
mathematical model proposed in the current paper is also applicable for calculating of the 
multicomponent stable mass transfer.     
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ABSTRACT 

As a gas flowing over a solid surface, there exists a kinetic boundary layer, also known as Knudsen 
layer (KL) near the surface in which the velocity changes rapidly. The KL is different from the 
viscous boundary layer usually encountered in hydrodynamic problems. The thickness of the KL is 
usually in the order of the mean-free path (MFP) of the gas system. Within the KL, the inter-
molecular collisions in the KL are much inefficient than that far from the wall so that the quasi-
thermodynamic-equilibrium assumption, upon which the Navier-Stokes constitution depends, does 
not hold any more. Therefore, it is generally thought that this linear Navier-Stokes constitutive 
relation is invalid. For many engineering problems, the KL is negligible and the flow within the KL 
can be well described by the Navier-Stokes equation. However, for non-continuum flows where the 
KL takes a large portion, it becomes critical to capture the gas motion in the KL. This work aims to 
develop an extended Navier-Stokes constitution with an effective viscosity which considers the KL 
effect.  

In order to capture the KL while keeping the simple form of the Navier-Stokes model, the following 
extended Navier-Stokes formulation is developed: 

( ) ( ) ( )e  r r r ,     (1) 

where  , e, and  are the local shear stress, effective dynamic viscosity, and strain rate at position 
r, respectively. The key point of this model lies in the definition of the effective viscosity e. Based 
on the relationship between the viscosity and the mean-free-path in the gas kinetic theory [1]: 

2
e

e
RT

p
 

  ,     (2) 

where p = RT is the pressure, with  the density, R the gas constant, and T the gas temperature. 
Therefore, once the effective mean-free-path e  is determined, the new Navier-Stokes model will 
be closed. The effective mean-free-path e  in a gas system bounded by a solid wall is always 
smaller than that in an unbounded system, because the free paths of some molecules will be cut off 
by the wall. The effect of wall-confinement on the mean-free-path can be expressed through a 
function  , 

( ,Kn).e  r      (3) 

The exact expression of   can be derived rigorously through the probability distribution function 
of the free-path of a gas molecule [2], and is usually dependent on the flow geometry. For instance, 
for a gas bounded between two parallel plates located at y=0 and y=H respectively, the mean-free-
path of the molecules in the plane located at 0 y  H is [3] 

1( )
2

y H yy  
 

    
     

    
,   (4) 
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where   is the mean-free-path for an unbounded system, and the function   is defined as 

2( ) 1 ( 1) ( )ie E        ,   (5) 

where ( )iE x  is the exponential integral function defined by 

1

1
( ) xt

iE x t e dt


   .     (6) 

From Eqs. (2) and (3) we can obtain the effective geometry-dependent viscosity as 

( ) ( )e y y  ,      (7) 

where   is the viscosity for an unbounded gas or that far away from the wall. 

It is noted that ( )x  is a monotonically increasing function satisfying (0) 0   and ( ) 1.0   . 
Therefore, if the top plate is removed, i.e. H  , the effective viscosity becomes 

( ) 1 .
2e

yy 
 



  
   

  
     (8) 

This suggests that the effective viscosity will approach to the bulk one far away from the wall, but 
is exactly one half of the bulk one at the wall. The fact that (0) / 2e   is consistent with some 
previous independent studies [4,5]. 

For a more complicated geometry, the exact formulation of the geometric function ( ,Kn) r  may 
be quite complicated. However, if the local curvature of the wall is not large, a more effective way 
may be to use the present formulation as a ``wall function", just like that proposed in Ref. [5].  

In practical applications the generalized Navier-Stokes equations with the extended constitution 
must be supplemented by some suitable boundary conditions. Generally, the true or microscopic 
velocity at the wall, su , is usually different from the virtual or macroscopic slip velocity ns

su  
extrapolated from the Navier-Stokes velocity in the bulk region. For instance, for the Kramer's 
problem these two slip velocities are given approximately by [6], 

2 (1 0.1817 ) ,s
uu
y


 



 
 


    (9) 

2 (1 0.1621 )ns
s

uu
y


 



 
 


,    (10) 

where   is the accommodation coefficient. As 1  , i.e., the wall is fully diffusive, both su  and 
ns
su  are in good agreement with the exact solutions of the linearized Boltzmann (BGK) equation [1]. 

The velocity outside the KL is linear for the Karmer's problem. Cercignani also proposed a second-
order slip boundary condition for ns

su  based on the solution of Boltzmann equation for the 
Poiseuille flow where the velocity outside the KL is nonlinear: 

2 2 21 1
2 2s y

ns
yu u u  

 
      

 
,    (11) 
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FIGURE 1. Velocity profiles of the Kramer problem. Solid line: Generalized Navier-Stokes model; 
Dashed line: linear extrapolation; Symbol: linearized Boltzmann equation [6] . Here /Y y   

with (2 / )    , and / 2U u a RT . 

where 1.016   and (2 / )    . Motivated by Eqs. (9), (10), and (11), we propose a 
heuristic second-order slip boundary condition for the microscopic slip velocity su : 

 1 2: (0)s w e ey y yeu u u A u A u             
,    (12) 

where (0)u  is the gas velocity at the wall, wu  is the wall velocity, and the two slip coefficients are 
given by 

2
1 2 1

2 1 1(1 0.1817 ),
2

A A A


 


    .   (13) 

This is a generalization of the boundary condition proposed in Ref. [3] where the two parameters A1 
and A2 are set to be 1.0 and 0.5, respectively. It should be emphasized that the mean-free-path 
appearing in the above boundary condition is a locally position-dependent variable. If we replace 

e  with the constant bulk mean-free-path  , Eq. (12) is very similar to the second-order slip 
boundary condition that is widely used for the classical Navier-Stokes equations [7]. It is also noted 
that owing to the use of the local effective-mean-free-path, the slip velocity given by Eq. (12) is 
smaller than that of the classical one given by Eq. (11) as 1  . This is reasonable since the micro-
slip velocity su  is usually smaller than the extrapolated Navier-Stokes slip velocity ns

su .  

The developed generalized Navier-Stokes constitution, together with a generalized slip boundary 
condition, is applied to several gas flows ranging from continuum to free-molecular regimes. It is 
shown that with this new model is able to capture the critical behaviors within the KL. The first test 
case is the Kramer problem, which is used to demonstrate the capability of the method for capturing 
the Knudsen layer. In this problem the gas fills the half space y>0 bounded by a wall in the plane 
y=0 and is sheared by a uniformly applied stress a at infinity [1]. For this problem, the second term 
on the right-hand side of the heuristic boundary condition (12) takes no effect since ( ) 0y e yu    
everywhere, and therefore equation (12) essentially gives a first-order slip boundary condition.  
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FIGURE 2. Normalized mass flow rate in a force driven channel flow. 

In Fig. [1], the velocity profiles predicted by the present MRT-LBE as   changes from 0.2 to 1.0 
are shown and compared with the results of the linearized Boltzmann equation [6]. For comparison, 
the linear extrapolations from the velocity profiles outside the KL are also shown. It is clearly seen 
that the LBE results are in good agreement with the solutions of the Boltzmann equation, and the 
nonlinearity of the velocity profile within the Knudsen layer is successfully captured. These 
observations demonstrate the potential capability of the present MRT-LBE model for capturing the 
flows within KL. 

The generalized Navier-Stokes model is also applied to the planar Poiseuille flow driven by a 
constant force a, which has a nonlinear velocity profile in the whole region. In Fig. 2 the 
nondimensional mass fluxes Q of several methods normalized by 2 / 2aH RT . It is seen that all 
of the methods give accurate results as Kn  0.1 in comparison with the solutions of the Boltzmann 
equation obtained and the experimental results [8]. Above this Kn, the other two methods (NSE-C 
and NSC-H), which use the classical Navier-Stokes model with the standard second-order slip 
boundary condition [1] or a modified one [9], produces unreasonable results. On the other hand, the 
present model predicts satisfied result in a rather larger region, and is able to capture the Knudsen 
minimum successfully. 
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ABSTRACT 

The present article deals with analytical solution of fully developed mixed convection flow of an 
incompressible and viscous fluid in a vertical annulus filled with porous material having variable 
porosity. The non-Darcian flow model derived by Vafai and Tien [13] is adopted for the momentum 
transfer in the porous domain. The inertia effect is neglected to derive the closed form solution for 
the governing equations. The influence of the porous matrix on the mass flow rate, pressure 
gradient, and shear stress at the duct surfaces is clearly demonstrated for isothermal and isoflux 
heating of the duct surfaces. The main objective is to investigate the influence of different 
parameters occurring in the present model, namely the Darcy number and the ratio of the radius of 
inner cylinder to the radius of outer cylinder, on the occurrence of flow reversal at the outer surface 
of inner cylinder or inner surface of outer cylinder for two different thermal boundary conditions at 
the outer surface of inner cylinder. During the course of numerical computation it was found that 
reverse flow occurs easily at the outer surface of inner cylinder for a small Darcy number when 
Isoflux heating of the duct surfaces. 

Key Words: Mixed Convection, Flow Reversal, Darcy Number, Porous Matrix. 

1. INTRODUCTION 

Studies of fluid flow in a vertical annular have drawn the attention of scientists because of its wide 
application in chemical engineering, petroleum exploration, underground water studies and many 
others. A recent literature survey shows that, Nield and Bejan [12] found that majority of the works 
on convection heat transfer in porous media are based on Darcy law[6]where specific range of 
Darcy and Reynolds numbers are used to determined the accuracy of the results. Vafai and Tien [13] 
discussed the importance of Brickman and Forchheimer terms in the case of forced convection flow 
over a flat plate and presented the results when the viscous and inertia terms are negligible. .Mishra 
et al. [11] studied the mixed convection in a vertical annulus filled with a porous matrix with 
constant porosity. Jha [9] studied free convection flow through an annular porous medium. 

Studies carried out by several investigators disclosed that flow reversal as a significant phenomenon 
in ducts [1,2,4,5,7,8,10,14]. Buoyancy-assisted flow reversal in the entrance region of vertical 
rectangular ducts has been studied numerically by Cheng et al. [5]. Various asymmetric heating 
boundary conditions have been reported. Also it has been found that the flow reversal takes place 
when the ratio Gr/Re surpasses a threshold value. The threshold value of Gr/Re for the onset flow 
reversal under fully developed conditions for mixed convection in a vertical parallel plate ducts is 
also investigated by Barletta [1,2]. The same study also evaluated the effect of various boundary 
conditions on flow reversal analytically. Ingham et al. [7] have addressed a numerical method 
solution of mixed convection in vertical parallel plate ducts, including the condition for both 
negative and positive values of Gr/Re. they have focused on the situations that buoyancy effects are 
so significant that flow reversal occurs either at the centre of the duct or near the walls. Marcondes 
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and Maliska [10] have solved the elliptic natural convection flows in open-ended channels applying 
different boundary conditions for pressure and velocity at the channel inlet. They have found that 
for non-symmetrical flow conditions, flow reversal at the channel outlet depends on the pressure 
boundary condition applied at the entrance. Wang et al. [14] have investigated numerically mixed 
convection flow at low Peclet numbers within vertical and horizontal pipes, paying attention to the 
flow reversal taking place at the thermal entrance region of the pipes. The occurrence regime of 
flow reversal corresponding to Pe has been identified for both cooling and heating cases. Since for 
low pr fluids the axial conduction plays a significant role in heat transfer, Pe is the relevant 
parameter whose effects on the occurrence of flow reversal have been studied. Bazdidi-Tehrani et al. 
[3] presented numerical analysis of combined mixed convection-radiation heat transfer in vertical 
channel where the radiative properties (i.e. emitting, scattering and absorbing) have been considered 
both for the walls and participating medium. The influence of two radiative parameters, namely, the 
conduction-radiation parameter and optical thickness on the flow reversal has been presented. None 
of the studies mentioned here have considered the flow reversal in vertical annulus filled with 
porous material. This motivated the present work to study flow reversal in mixed convective flow 
passing through vertical annulus filled with porous material. The fully developed mixed convection 
flow of an incompressible and viscous fluid in vertical concentric annuli filled with a porous 
material having variable porosity for isothermal or isoflux heating of duct surface was studied. 

2. MATHEMATICAL ANALYSIS 

A steady laminar fully developed mixed convection flow of an incompressible and viscous fluid is 
considered in a vertical concentric annulus of infinite length filled with porous material having 
variable porosity. A pressure gradient is taken along z-axis parallel to the axis of the cylinders and 
r-axis perpendicular to it. In formulating the problem, the following assumptions have been made: 

 The fluid obeys Boussinesq approximation. 
 The velocity of the fluid varies in the axial direction only. 
 The heat transfer takes place by conduction only. 
 The pressure gradient is taken into account. 

Under these assumptions, flow of fluid through a vertical annulus filled with porous material having 
variable porosity is considered by heating the duct surface Isothermally or constant heat flux so that 
its temperature is different from the ambient temperature 1

0T . Therefore, the basic equations and 
boundary conditions for this problem in dimensional form are in equations (1) and (2) respectively 

 
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2
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3. CONCLUSION 

The fully developed flow characteristics including phenomena of reversal flow of the mixed 
convection in a vertical annulus filled with porous material having variable porosity are investigated 
theoretically. The most important outcome of the numerical calculations of the analytical result is 
that behaviour of the flow formation of the fluid, as a result of mixed convection between the 
cylinders, filled with porous material and saturated with same fluid, can be controlled by applying a 
suitable mode of heating process, and also by changing the gap between the cylinders. The 
occurrence of the reversal flow is found to be strongly dependent on the value of Gr/Re=GRe. 
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ABSTRACT 

A benchmark problem of 3D natural convection/surface radiation coupling in an air-filled square 
cavity is investigated. The benchmark problem and reference solutions are provided for Ra=104,105 
and 106. The relationship between the two spatial resolutions (one for the Navier-Stokes and another 
for the surface radiation) is also discussed.  

Key Words: Natural Convection, Surface Radiation, Benchmark Problem 

1. INTRODUCTION 

Natural convection in an air-filled square cavity became a reference problem for validating the CFD 
codes after the pineering work of De Vahl Davis [1]. There was still no benchmark problem in an 
air-filled cavity for the coupling of natural convection with surface radiation in 3D cases, and it is 
difficult to validate the parallel 3D code developed [2]. Colomer et al. [3] have provided the 3D 
simulation results of convection and radiation in a differentially heated cavity, but according to the 
dimensionless parameters that he supplied, it is hard to determine the values of physical quantities 
such as averaged temperature T0,  temperature difference ∆T, cavity height H and so on.  The aim of 
this work is to provide the reference solutions on the purpose of validating numerical procedures 
developed for investigating the interaction of natural convection with surface radiation.  

2. NUMERICAL METHODS AND BENCHMARK PROBLEMS 

Spectral methods and MPI (Message Passing Interface) are used for both natural 
convection and surface radiation. Parallel DNS is performed for the coupling laminar 
natural convection with surface radiation in air-filled cavities. Parallel multi-domain has 
been implemented by using influence matrix technique for constructing Schur 
complement [2]. 

The Benchmark problem concerns a 3D air-filled cubic cavity of height H, width W and depth D, 
which is an extension of the 2D benchmark problem [2]. Air in the cavity is considered as a 
transparent medium.  The two vertical walls at x=0 and W are maintained at constant but different 
temperatures (Th, Tc and ∆T= Th-Tc) and other walls are adiabatic with the convection-radiation 
balance. No slip condition is applied on the cavity walls. Buoyancy-driven air flow in the cavity is 
governed by the Navier-Stokes equations under Boussinesq assumption. The representative 
parameters are the geometrical aspect ratios Ax=H/W and Ay=D/H(Ax= Ay=1), Prandtl number, 
Pr=ν/α=0.71, and Rayleigh number, Ra=(gβ∆TH3) /(να). The six cavity walls (grey, diffuse and 
opaque) have the same emissivity, ε=0.1. T0(=(Th+Tc)/2) is set to 293.5K, then λ at T is 
0.025W/(m.K). gβ/νk=1.08E8.Table 1 displays the values of H and ∆T corresponding to each 
Rayleigh number investigated.   
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Ra 104 105 106

H(m) 0.020 0.045 0.097 
∆T(K) 11.574074 10.1610527 10.1452100  

 
TABLE 1. Ra investigated and the corresponding H and ∆T 

3. RESULTS 

At first, the simulation results are compared with that in [3](TABLE 2).Although 
Colomer et al. [3] did not give the clear physical parameters, we can estimate the value of 
∆T according to the values of Ra, Pl, and Tc/∆T. The estimated value of ∆T is 17.954K in 
case of T0=278.29K, accordingly, H=0.03369m. TABLE 2 shows that our simulation 
results agree well with that of Colomer et al. [3]. For wmax(z=0.5), the sum of two y values  
approaches to 1  because the fluid field is symmetrical along y direction.  

 Umax(x=0.5) y z Wmax(z=0.5) x y 
Hot 
Nuc  

Hot 
Nur

Colomer 
et al. [3] 0.1869 0.285 0.869 0.2865 0.069 0.115 3.983 3.385 

simulated 0.1874 0.2815 0.8746 0.2890 0.0744 0.8813 3.9761 3.6471
 

TABLE 2. Local extreme values for velocity and average Nusselt numbers in hot wall(Ra=105,  
Pl = 0.043, Tc/∆T=15 , ε=1 and Pr =0.71) 

   
TABLE 3 shows average convection Nusselt numbers, maximum and minimum velocity and their 
positions when y=0.5 at Ra=104.  Numerical results are compatible with that in 2D cases [2].It 
indicates that (Ni*Nj*Nk)r has almost no influence and they can be considered as converged 
solutions. Convection Nusselt numbers are more sensible to (Ni*Nj*Nk)NS. TABLE 4 lists average 
Nusselt numbers in planes, maximum velocity in the cavity and their positions at Ra=104. 
Numerical results also indicate that coarser (Ni*Nj*Nk)r can be used as is shown in 2D cases [2]. 
TABLE 5 and 6 lists the numerical solutions in planes and in the cavity at Ra =105 and Ra=106. 
 
(Ni*Nj*Nk)NS 32*32*8 48*48*12 
(Ni*Nj*Nk)r 16*16*4 32*32*8 48*48*12 16*16*4 24*24*6 48*48*12 

Hot Nuc  2.2493E+00 2.2492E+00 2.2492E+00 2.2486E+00 2.2486E+00 2.2486E+00 

W/2 Nuc  2.3151E+00 2.3152E+00 2.3152E+00 2.3152E+00 2.3152E+00 2.3152E+00 

Cold Nuc  2.2549E+00 2.2549E+00 2.2549E+00 2.2543E+00 2.2543E+00 2.2543E+00 
W/2 Umax 1.6967E-01 1.6967E-01 1.6967E-01 1.6967E-01 1.6967E-01 1.6967E-01 

z 8.2796E-01 8.2796E-01 8.2796E-01 8.2796E-01 8.2796E-01 8.2796E-01 
W/2 Umin -1.6979E-01 -1.6979E-01 -1.6979E-01 -1.6979E-01 -1.6979E-01 -1.6979E-01

z 1.7186E-01 1.7186E-01 1.7186E-01 1.7185E-01 1.7185E-01 1.7185E-01 
H/2 Wmax 1.8774E-01 1.8774E-01 1.8774E-01 1.8774E-01 1.8774E-01 1.8774E-01 

x 1.1651E-01 1.1651E-01 1.1651E-01 1.1653E-01 1.1653E-01 1.1653E-01 
H/2 Wmin -1.8796E-01 -1.8796E-01 -1.8796E-01 -1.8796E-01 -1.8796E-01 -1.8796E-01

x 8.8353E-01 8.8353E-01 8.8353E-01 8.8355E-01 8.8355E-01 8.8355E-01 
 

TABLE 3. Benchmark solutions at Ra=104 in a cubic cavity (y=0.5)  
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(Ni*Nj*Nk)NS 32*32*8 48*48*12 

(Ni*Nj*Nk)r 16*16*4 32*32*8 48*48*12 16*16*4 24*24*6 48*48*12 

Hot Nuc  2.0914E+00 2.0913E+00 2.0913E+00 2.0907E+00 2.0907E+00 2.0906E+00

W/2 Nuc  1.9541E+00 1.9541E+00 1.9541E+00 1.9541E+00 1.9541E+00 1.9541E+00

Cold Nuc  2.0973E+00 2.0972E+00 2.0972E+00 2.0966E+00 2.0966E+00 2.0966E+00

Hot Nur  2.2754E-01 2.2747E-01 2.2746E-01 2.2754E-01 2.2749E-01 2.2746E-01

Cold Nur  2.2160E-01 2.2154E-01 2.2153E-01 2.2160E-01 2.2156E-01 2.2153E-01

Front Nur  -1.7197E-03 -1.7195E-03 -1.7195E-03 -1.7197E-03 -1.7196E-03 -1.7195E-03

Rear Nur  1.7197E-03 1.7195E-03 1.7195E-03 1.7197E-03 1.7196E-03 1.7195E-03

Bottom Nur  -8.2632E-02 -8.2632E-02 -8.2632E-02 -8.2633E-02 -8.2633E-02 -8.2633E-02

Top Nur  -8.0132E-02 -8.0132E-02 -8.0132E-02 -8.0132E-02 -8.0133E-02 -8.0133E-02
Umax 1.6987E-01 1.6987E-01 1.6987E-01 1.6987E-01 1.6987E-01 1.6987E-01

x 5.1791E-01 5.1791E-01 5.1791E-01 5.1791E-01 5.1791E-01 5.1791E-01
y 5.0000E-01 5.0000E-01 5.0000E-01 5.0000E-01 5.0000E-01 5.0000E-01
z 8.2670E-01 8.2670E-01 8.2670E-01 8.2672E-01 8.2672E-01 8.2672E-01

Vmax 2.1908E-02 2.1908E-02 2.1908E-02 2.1909E-02 2.1909E-02 2.1909E-02
x 1.1926E-01 1.1926E-01 1.1926E-01 1.1926E-01 1.1927E-01 1.1926E-01
y 7.8080E-01 7.8080E-01 7.8080E-01 7.8081E-01 7.8081E-01 7.8082E-01
z 1.5452E-01 1.5452E-01 1.5452E-01 1.5448E-01 1.5447E-01 1.5447E-01

Wmax 1.9105E-01 1.9105E-01 1.9105E-01 1.9105E-01 1.9105E-01 1.9105E-01
x 1.1774E-01 1.1774E-01 1.1774E-01 1.1773E-01 1.1773E-01 1.1773E-01
y 7.2637E-01 7.2637E-01 7.2637E-01 2.7362E-01 2.7362E-01 2.7361E-01
z 4.8360E-01 4.8358E-01 4.8358E-01 4.8358E-01 4.8358E-01 4.8358E-01

TABLE 4. Benchmark solutions at Ra=104 in a cubic cavity 
 

(Ni*Nj*Nk)r 24*24*6 48*48*12 24*24*6 48*48*12 
D/2 Umax 1.4646E-01 1.4646E-01 1.4493E-01 1.4493E-01 

x 3.2116E-01 3.2116E-01 1.9983E-01 1.9983E-01 
z 8.8920E-01 8.8920E-01 9.4030E-01 9.4030E-01 

D/2 Wmax 2.0862E-01 2.0862E-01 2.1892E-01 2.1892E-01 
x 6.4433E-02 6.4433E-02 3.7136E-02 3.7136E-02 
z 5.0388E-01 5.0388E-01 4.8592E-01 4.8592E-01 

Hot Nucmax 8.9824E+00 8.9753E+00 1.8685E+01 1.8666E+01 
y 4.9999E-01 4.9999E-01 7.8530E-01 7.8541E-01 
z 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

W/2 Nucmax 1.1247E+01 1.1247E+01 2.5672E+01 2.5672E+01 
y 6.3992E-01 6.3995E-01 7.7637E-01 7.7637E-01 
z 8.7567E-01 8.7567E-01 1.1460E-01 1.1462E-01 

Cold Nucmax 8.9710E+00 8.9642E+00 1.8684E+01 1.8666E+01 
y 4.9999E-01 4.9999E-01 2.5770E-01 7.4233E-01 
z 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 

Hot Nurmax 5.3527E-01 5.3530E-01 1.1566E+00 1.1566E+00 
y 5.0004E-01 5.0000E-01 5.0004E-01 5.0000E-01 
z 2.8060E-01 2.8050E-01 2.3773E-01 2.3753E-01 

TABLE 5. Benchmark solutions at Ra=105 and 106 in a cubic cavity ((Ni*Nj*Nk)NS=48*48*12) 
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(Ni*Nj*Nk)r 24*24*6 48*48*12 24*24*6 48*48*12 

Hot Nuc  4.2726E+00 4.2726E+00 8.3238E+00 8.3237E+00  

W/2 Nuc  4.0964E+00 4.0964E+00  8.1167E+00 8.1168E+00  

Cold Nuc  4.2848E+00 4.2848E+00  8.3500E+00 8.3499E+00  

Hot Nur   5.1519E-01  5.1514E-01  1.1172E+00  1.1171E+00 

Cold Nur  5.0300E-01 5.0295E-01 1.0904E+00  1.0903E+00  

Front Nur  -3.8124E-03 -3.8123E-03 -8.5169E-03 -8.5167E-03  

Rear Nur  3.8124E-03 3.8123E-03 8.5169E-03 8.5167E-03 

Bottom Nur  -2.3525E-01 -2.3524E-01  -5.4921E-01  -5.4920E-01  

Top Nur   -2.3066E-01 -2.3066E-01  -5.3942E-01  -5.3941E-01 
Umax  1.4914E-01  1.4914E-01 1.4784E-01 1.4784E-01 

x 3.2282E-01 3.2282E-01 2.0535E-01 2.0535E-01  
y  2.7687E-01  2.7687E-01  7.9359E-01  7.9359E-01  
z  8.9243E-01  8.9243E-01  9.4072E-01   9.4072E-01   

Vmax 3.3471E-02  3.3471E-02 3.2452E-02 3.2452E-02 
x 8.5880E-02  8.5880E-02 5.5735E-02  5.5746E-02  
y  8.3668E-01   8.3668E-01   8.9530E-01   8.9530E-01  
z   1.1297E-01   1.1297E-01 6.6302E-02   6.6288E-02   

Wmax 2.2834E-01  2.2834E-01  2.4122E-01 2.4122E-01 
x 7.0803E-02 7.0803E-02 4.0173E-02  4.0173E-02  
y   8.7281E-01  8.7281E-01 7.0221E-02   7.0232E-02   
z 5.0324E-01   5.0324E-01 4.7692E-01 4.7692E-01   

 

TABLE 6. Benchmark solutions at Ra=105 and 106 in a cubic cavity ((Ni*Nj*Nk)NS=48*48*12) 
 

4. CONCLUSIONS 
 

Benchmark solutions are provided for Ra=104,105 and 106 by code coupling between 
Navier-stokes and surface radiation parallel codes. The simulation results indicate that   
(Ni*Nj*Nk)r can be coarser than (Ni*Nj*Nk)NS in 3D cases. 
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ABSTRACT 

Natural convection in vitreous humour and associated effects during TTT are studied numerically 
using two-dimensional full scale model of human eye. Both steady state and transient simulation are 
performed considering the laser irradiation and subsequent heating of retina. Cooling effect at retina 
due to natural convection is found to be significant.   

Key Words: Heat Transfer, Natural Convection, TTT, Vitreous Humor. 

1. INTRODUCTION 

Increasing interest in the fluid dynamics of eye is prevalent owing to the difficulty in delivering 
drug effectively to the posterior segment of eye. The aqueous humour flow inside the anterior 
chamber of eye has been studied in detail by Canning et al. [1], Ooi et al. [2] and Fitt et al. [3]. 
However less attention is given for vitreous humour flow. The objective of the present study is to 
analyse the natural convection in vitreous humour undergoing transpupillary thermotherapy (TTT). 
TTT is a low retinal irradiance, long pulse IR diode laser photocoagulation treatment with a large 
laser spot diameter. TTT is routinely used in treatment of choroidal neovascularization. During TTT, 
the temperature of retina increases around 10 to 15 K as studied by Kandulla et al. [4]. The existing 
temperature difference across the eye tissues should induce natural convection in vitreous humour 
during TTT. Thus neglecting the vitreous humour flow may result in inaccurate temperature 
prediction and extent of thermal damage on the retinal surface. 

2. NUMERICAL METHOD 

Using numerical simulation, the steady state and transient temperature distribution in eye subjected 
to TTT is predicted. The temperature distribution for a stagnant vitreous humor is initially evaluated. 
Then it is contrasted with the temperature distribution inside the eye considering the natural 
convection in vitreous humour. The energy equation is numerically solved in the eye domain. The 
Boussinesq approximation is incorporated into the conservation equations. The density variation 
induced due to temperature variation is accounted by this approximation. The boundary conditions 
imposed are: Combined convection and radiation boundary condition at corneal surface (h = 10 
Wm-2K-1) and a convective boundary condition at the sclera (h = 65 Wm-2K-1) which accounts 
for cooling effect of blood convection. Outside and body core temperature are assumed to be 298 K 
and 310 K respectively in the numerical simulations. The geometrical model is constructed using 
the commercial software GAMBIT 2.4.6. Quadrilateral finite volume (surface) elements are used 
for meshing the eye domain. The conservation equations are solved by FLUENT 6.3.26. A laser 
power of 300 mW and spot diameter of 4 mm is considered for numerical simulations. 

3. RESULTS AND DISCUSSIONS 

3.1 Steady state results: 

3.1.1 Temperature distribution: 
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The steady state temperature distribution inside the eye during TTT considering the natural 
convection in the vitreous humour is presented in the Fig. 1(a). The cornea absorbs 5 % of the laser 
energy (15 mW). Between aqueous humour and vitreous humour including lens, another 5 % of 
laser energy (15 mW) is absorbed. Out of the remaining (270 mW) laser energy, 40 % is absorbed 
in retina. A summary of thermo-physical properties, the laser power distribution between the 
different eye tissues and resulting volumetric heat generation rates are presented in Table 1. As 
vitreous humour is composed of more than 99 % of water, the viscosity and coefficient of thermal 
expansion of vitreous humour are considered same as that of water.   

The peak temperature of the retina is observed to be at 346 K for a stagnant vitreous humour during 
steady state simulation. Due to cooling effect of natural convection in vitreous humour, the peak 
temperature reduces to 330 K as shown in Fig. 1(a). As seen from the steady state isotherms (Fig. 
1a), asymmetry exists in the temperature distribution due to vitreous humour flow. The natural 
convection flow enhances the retinal heat transfer in the direction of natural convection current. 
Thus effect of natural convection cannot be ignored during long duration surgery like TTT.  

Eye 
tissue 


 

(W/m-K) 

c 
 

(J/kg-K) 


 

(Kg/m3) 


 

(%) 

Absorbed 
power 
(mW) 

Thickness 
 

(mm) 

Volume 
(x10-9) 
(m3) 

Q''' 
(x106) 

(W/m3) 
Cornea 0.58 4178 1050 5 15 0.52 6.534 2.295 
Aqueous 0.58 3997 1000 1 3 3 37.699 0.0795 
Lens 0.4 3000 1050 1 3 3.6 45.238 0.0663 

Vitreous 0.603 4178 1000 3 9 15.88 199.553 0.0451 
Retina 0.603 4178 1000 36 108 0.01 0.1256 859.87 
Sclera 0.603 4178 1000 0 0    

TABLE 1. Thermo-physical properties and volumetric heat generation rates in the human eye tissue. 

3.1.2 Velocity contours: 

The velocity contour of the natural convection flow in vitreous humour is shown in the Fig. 1(b). 
From the Fig. 1(b), it is clear that the flow is concentrated more in the upper half of the vitreous 
humour chamber. The region adjacent to the heating zone gains sufficient buoyant force to rise into 
the upper half region. A substantial portion of the vitreous humour at the bottom remains un-heated 
due to lack of penetration from the heating provided by the local retinal heat source.           

3.1.3. Velocity profile at pupillary axis: 

The y-component velocity magnitude during steady state simulation and induced natural convection 
due to temperature gradient during TTT along the pupillary axis is shown in Fig. 2. The peak 
velocity is found to be near to the retina (in vitreous humour, approximately 1 mm away from the 
retina). The obtained velocity profile is similar to the velocity profile for natural convection in a 
heated vertical plate.  
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FIGURE 1. Steady state (a) isotherms and (b) velocity contour in eye during TTT for a laser power 

of 300 mW, laser spot diameter of 4 mm and natural convection in vitreous humour 

 

FIGURE 2. Y-component of velocity magnitude along the pupillary axis during steady state 
simulation of TTT  considering natural convection in vitreous humour. 

3.2 Transient results: 

Considering the same parameters used in steady state simulations, transient simulations of TTT 
process are performed for a laser heating period of 60 seconds. The time of transient simulation (60 
seconds) is the typical time considered for TTT process. The steady state simulation of the natural 
convection in the vitreous humour due to the temperature gradient developed from body core 
temperature and outside temperature, without laser heating is used as the initial condition for the 
transient simulations.  

3.2.1 Transient temperature distribution: 

Isotherms resulting from transient simulation of TTT process at 60 second are presented in Fig. 3(a). 
The peak temperature in the retina, reaches to 318 K after 60 seconds of laser heating during 
transient simulation of TTT process, whereas the peak temperature with same parameters is 330 K 
for steady state simulation. Thus an increase of 8 K above body core temperature is seen during 
transient simulation. This temperature rise is not sufficient to destroy the target tissue, but sufficient 
enough to induce the natural convection in vitreous humour as presented in the next subsection. 

3.2.2. Transient velocity contour:  

The contours of velocity magnitude during transient simulation of TTT process at 60 seconds are 
presented in Fig. 3(b).  The natural convection flow of vitreous humor in human eye is developed 
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due to the transient heating of retina by laser. As stated in previous section, the magnitude of peak 
temperature is just 8 K above body core temperature which is not sufficient for irreversible cell 
damage, but well enough to induce natural convection in vitreous humor. It is interesting to see that 
the maximum velocity (0.00227m/s) attained in transient condition is more than that of steady state 
condition (0.00193 m/s). This can be attributed to the higher local temperature gradient between 
laser treated zone and the adjacent vitreous fluid. The higher velocity can further enhance the drug 
deposition rate at targeted tissue compared to steady state condition. 

 

FIGURE 3. (a) Isotherms and (b) velocity contour in human eye during transient simulation of TTT 
process at 60 seconds for a laser power of 300 mW, laser spot diameter of 4 mm and natural 

convection in vitreous humour 

4. CONCLUSIONS 

Two-dimensional computational model of the human eye has been developed and numerical 
simulations for studying the natural convection in vitreous humour during TTT are performed. 
Temperature distribution and velocity contours have been presented for both the steady state and 
transient conditions. The velocity contour showed maximum velocity of transient case to be higher 
than the steady state case. Substantial vitreous humour at the bottom remained un-heated due to lack 
of penetration from the local retinal heat source. The simulation studies may be extended for 
varying laser power, laser heating time and laser spot diameter to characterize the extent of heat 
penetration on the retinal surface due to natural convection in the vitreous humour.         

REFERENCES 

[1] C R Canning, M J Greaney, J N Dewynne, and A D Fitt. Fluid flow in the anterior chamber of 
a human eye. IMA Journal of Mathematics Applied in Medicine and Biology, 19:3160, 2002. 

[2] Ean Hin Ooi and Eddie Yin Kwee Ng. Simulation of aqueous humor hydrodynamics in human 
eye heat transfer. Computers in Biology and Medicine, 38(2):252–262, 2008. 

[3] A D Fitt and G Gonzalez. Fluid mechanics of the human eye: Aqueous humour flow in the 
anterior chamber. Bulletin of Mathematical Biology, 68:5371, (2006). 

[4] J Kandulla, H Elsner, R Birngruber, and R Brinkmann. Noninvasive optoacoustic online retinal 
temperature determination during continuous-wave laser irradiation. Journal of Biomedical 
Optics, 11(4):041111–1–13, 2006. 



 

 

Second International Conference on Computational Methods for Thermal Problems 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 
3D IHCP IN POOL BOILING: MATHEMATICAL FORMULATION, 
EFFICIENT COMPUTATIONAL STRATEGIES AND SOFTWARE 

TOOL 
Yi Heng 

AixCAPE e.V., D-52072, Aachen, Germany, Heng@aixcape.org 

Adel Mhamdi, Wolfgang Marquardt 
AVT - Process Systems Engineering, RWTH Aachen University, D-52064 Aachen, Germany, 

{Adel.Mhamdi, Wolfgang.Marquardt}@avt.rwth-aachen.de 

 

ABSTRACT 

Among all kinds of studies on boiling processes, the efficient and accurate estimation of the local 
heat flux distribution at the boiling surface, beyond its average information which can be obtained 
by traditional approaches, is a crucial prerequisite in modern modeling of boiling heat transfer. For 
accurate predictions, the heat flux estimation task is formulated as a three-dimensional (3D) inverse 
heat conduction problem (IHCP). In case of a complex heater geometry, realistic boundary 
conditions and a nonuniformly measurement configuration, the solution of the 3D IHCP considered 
leads to a large-scale PDE-constrained optimization problem. Further, regularization-based 
techniques have to be applied to tackle the inherent severe ill-posedness of the 3D IHCP. This paper 
gives a brief summary of our recent developments in the efficient solution of the 3D IHCP which 
accomplishes the task of heat flux reconstruction in pool boiling. It incorporates an iterative 
regularization based on a conjugate gradient method for the normal equations (CGNE) and a multi 
level adaptive computational strategy. The novel method can efficiently cope with both idealized 
(high-resolution) and limited point-wise experimental data which are commonly available in most 
heat transfer experiments. The method has been applied to the evaluation of real temperature data 
obtained from two novel pool boiling experiments. For the first time, the computational effort of 
such tasks reduces to the order of minutes on standard desktop computers. 

Key Words: 3D IHCP, Boiling Heat Transfer, Iterative Regularization, Adaptive Mesh Refinement. 

1. INTRODUCTION 

From the mathematical point of view, the estimation of the temperature and heat flux distribution at 
the inaccessible boiling boundary from interior temperature observations belongs to the class of 3D 
boundary IHCP. The solution procedure of the IHCP is not trivial with respect to both its severe ill-
posedness and the high computational effort. During the past decades, numerous numerical and 
application-oriented IHCP papers have been published. However, due to the high complexity, most 
of them are restricted to one or two space dimensions. Only a few publications are available for 
IHCP in three dimensions but on regular computational domains (cf. a literature review of previous 
works on 3D IHCP in [1]). To our knowledge, none of the existing IHCP solution techniques can 
cope with both more complex computational domains and non-uniformly measurement 
configurations employed in real experiments, which is considered in this paper. 

2. MATHEMATICAL FORMULATION 

This prototype IHCP to be investigated arise from two novel pool boiling experiments operated by 
our collaboration partners [2, 3] (cf. Figure 1 and Figure 2). Let Hilbert spaces X , Y , e.g. the set of 
L2 functions, denote the solution and data spaces, respectively. Let unperturbed temperature data 
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corresponding to the true heat flux q  at the boiling surface B  be denoted by mT  and the noisy 

data be denoted by 

mT  with an upper error bound  , i.e., . 
Ymm TT  

 

FIGURE 1. A single-bubble nucleate boiling experiment (adopted from [4]) 

 

FIGURE 2. Experimental setup of the test heater and schematic of the MTC arrangement (adopted 
from [5] used in pool boiling experiments carried out at TU Berlin [2]) 

The IHCP under investigation corresponds to the reconstruction of the unknown heat flux q  at B  
from noisy temperature observations 

mT  measured inside the heater or on part of the boundary. The 
IHCP in the operator form can be formulated as follows: 

 Find Xq  such that 
mTKq   (1) 

where the function operator K  is implicitly given by eqs. (2)–(3): 

 ( ),      in (0, )p f
Tc T t
t

 


   


,     ( ,0) 0,      on T     (2) 

 0,      on ( ) (0, )H R f
T t
n




   


,     B,      on (0, )f
T q t
n




  


  (3) 

  represents the heater geometry with the boundary defined as RRH  : . The 
observation time interval is ],0[ ft and n  denotes the outer normal on the boundaries. BH  ,  and 

R  denote the heated boundary, the boiling boundary and the remaining boundary, respectively.  , 

pc  and   denote the density, the heat capacity and the heat conductivity of the materials, 
respectively. It has to be mentioned that a general IHCP constrained by a linear heat equation 
system with non-homogeneous initial and boundary conditions can always be reduced to (1), cf. [5]. 

3. SOLUTION ALGORITHM 

The IHCP stated in eq. (1) can be cast into the following minimization problem: 
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2 2min  ( )  subject to  ( ) ( ) ,   1m Y

J q J q Kq T        (4) 

Kq  corresponds to the temperature predictions at the measurement locations for a given heat flux 
q  which results from a solution of the model (2)–(3). The constraint in (4) is necessary to avoid an 
overfitting. It bounds the residual from below by the measurement error. 

3.1. Single-level approach. In case K  is a linear function operator, the minimization problem (4) 
can be solved by the CGNE algorithm efficiently (cf. Algorithm 1, [5]). L  can be chosen as either 
the identity operator or the differential operator. For the implementation of Algorithm 1, it requires 
to realize the forward and adjoint operators K and 'K . Detailed implementation issues can be 
found in [1, 5]. 

Algorithm 1 Modified CGNE Iteration 

Let Xq 0 , 1 ,  , K  and 'K  be given.  Set 00 KqTd m   , 001 ' dKsp  . 

For ,,2 ,1 k compute 

    , , ,/ , 11
22

1 kkkkkkkkYkXkkkk uddpqquLsKpu     

    stop , if 
Ykd , otherwise, kkkkXkXkkkk pspLsLsdKs    1

2
1

2  ,/ ,' . 

3.2. Multi-level adaptive approach. A further significant improvement in the computational 
efficiency can be obtained by using a type of multi-level adaptive approach (cf. Algorithm 2). Note 
that different types of a-posteriori error estimators can be applied in step 3, e.g. the temperature-
based error estimation technique, which is efficient for point-wise measurements [6]. In our most 
recent work [4], a completely different but general heat flux-based error estimation technique was 
developed to tackle both high-resolution and point-wise measurement configuration. With this 
novel computational strategy, 3D IHCP in pool boiling previously considered computationally 
intractable can be solved for the first time in the order of minutes on standard desktop computers. 

Algorithm 2 Multi-level adaptive regularization 

1. Choose an initial coarse mesh 1
h  and set 1l , 01

0, hq  

2. Solve the IHCP on l
h  to obtain the solution l

hq  (Algorithm 1) 

3. Evaluate the a-posteriori error estimator 

4. If the predefined stopping condition is fulfilled, stop 

5. Refine ioninterpolat  thebeing ~ with ,~  valueinitialset  and 1
0,

1 l
h

l
h

l
h

l
h

l
h qqq  

1 meshfiner   theon  solution  theof  l
h

l
hq ; increment l  and go to 2 

4. IHCP TOOL AND ITS APPLICATIONS 

The CGNE minimization algorithm combined with the multi-level adaptive mesh refinement 
strategy is coded in C++ and integrated with the NETGEN/NGSolve software package. Only a few 
estimation results along the entire boiling curve are shown in Figure 3 for lack of space. Further 
related material can be found at http://www.avt.rwth-aachen.de/AVT/index.php?id=780. 

http://www.avt.rwth-aachen.de/AVT/index.php?id=780
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FIGURE 3. Boiling curve of isopropanol at 1.0satP  MPa; Representative plots of estimated local 

boiling heat flux distribution in the different boiling regimes 

5. CONCLUSIONS 

In this paper, a mathematical formulation of 3D IHCP stemming from pool boiling experiments has 
been presented. The estimated local boiling heat fluxes, together with other experimental results, 
have provided a database for the development of realistic mechanistic heat transfer models for 
boiling regimes beyond low heat flux nucleate boiling. The proposed IHCP solution technique can 
also be viewed as an efficient soft sensor to deduce unmeasurable local boiling heat fluxes such that 
the evaluation of the experimental data can easily be integrated into the experimental work process. 

Possible future works include the development and implementation of adaptive discretization 
algorithm also in time, the extension of the problem formulation to cover the wetting characteristics 
on the boiling surface.  
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ABSTRACT 

In this paper, we investigate an inverse problem on the determination of boundary coefficients 
within the framework of Stefan-Boltzmann radiation conditions for the heat transfer process. 

The mathematical formulation for the forward and inverse problems is introduced and the 
uniqueness of the inverse problem is proved. The finite difference method is implemented for a 
discretization of the forward problem. Based on the feature of the problem, we propose a 
reconstruction method for solving the inverse problem. Some regularization techniques are 
implemented to overcome the ill-posedness of the problem. Numerical simulation shows that our 
reconstruction method is stable and effective.  

Key Words: Stefan-Boltzmann coefficients; Inverse problems; Heat transfer. 

1. INTRODUCTION 

In modern engineering and manufacturing, a quality control is widely used in order to ensure 
whether products are designed to meet customers' requirements, and the quality control is usually 
done by detecting defects on the surface of products. The size of these kinds of defects is usually 
small and cannot be directly observed, for example, by some standard cameras. Nevertheless, in the 
laboratory experiments, it is observed that such kinds of defects significantly influence the heat 
radiation process on the surface of a product. This observation yields a possibly new quality control 
method, which will be discussed in the current paper, in order to detect defects by a thermal camera 
when the product is heated suitably. 

Existing detection methods include computerized surface-colour comparison, manual observation, 
etc. These methods highly depend on the obvious colour difference induced by a defect on the 
surface of a material. However, the defects which do not have some obvious difference on the 
surface will usually be ignored by the mentioned methods above. By laboratory experiments on 
specimens, we observe that the heat transfer process near the defect is different from the normal 
region. More precisely, when we heat the specimens up to a certain temperature, the cooling process 
then shows a different temperature profile, which can be observed by thermal cameras. 
Mathematically, the changing cooling modes are modelled by different Stefan-Boltzmann radiation 
coefficients of the normal and the defective surface.  

In this talk, we focus on the reconstruction of the coefficients in a Stefan-Boltzmann 
boundary condition for the heat transfer process without initial temperature value. Notice 
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differences between the coefficients are caused by defects, we thus expect to detect these 
defects on the surface of a material by reconstructing the coefficients and finding their  
locations with respect to the coefficient difference.  

2. MAIN BODY 

In this paper we consider a three-dimensional simply connected domain , whose boundary   is 
Lipschitz continuous. The main interest focuses on the heat transfer process, i.e., the temperature 
distributions ( , )u x t  with ( , ) [0, ]x t T . Thus the mathematical model for the forward problem 
is governed by 

 0
4 4

( , ) ( , ), , [0, ],
( , ) ( ), ,

( , ) ( )( ( , ) ), , [0, ].

t

n A

u x t u x t x t T
u x t u x x

u x t x u x t u x t T



 

    


 

     

 (1) 

Here we assume that the thermal conductivity ,   are positive constants, 0Au  represents the 
constant air temperature outside of the domain . Moreover the initial temperature 0 ( )u x  and the 
coefficient function ( )x  of the Stefan-Boltzmann boundary condition are supposed to be two 
strictly positive functions depending on the spacial variable x . The nonlinear boundary condition in 
(1) is the Stefan-Boltzmann boundary condition, which represents the radiation phenomena of the 
heat transfer laws on the boundary. 

The forward problem is to compute the temperature distributions ( , )u x t  with the known domain 
 , constants , , Au   and functions 0 ( ), ( )u x x . Such a kind of problems can be solved within 
the classical theoretical framework, and as for numeric of a related forward problem. 

In this talk, we concentrate on an inverse problem, which aims at the determination of the 
coefficient ( )x  in the Stefan-Boltzmann boundary condition by additional information of ( , )u x t  
on some part of the boundary. Based on the real situations in industry, one cannot expect an initial 
value of 0 ( )u x  since we only access the online testing on the surface.  

Here we will provide a detailed description. Mathematically, a defect of a specified material usually 
presents a non-constant Stefan-Boltzmann coefficient function. Let us assume that the Stefan-
Boltzmann coefficient function ( )x  satisfies  

 
0

( ), ,
( )

, \ ,
u x x

x
x







 

 
 (2) 

where 0 0, ( ) 0u x   , and 0 ( )u x  . We understand that \   is defined as a normal 
surface where the value of ( )x  is known to be a fixed constant 0 . At the same time, the 
coefficient function value on the defect area   is unknown and needs to be determined. We 
distinguish the defect area   and the anomalous coefficient ( )u x  where an inequality 

0 ( )u x   is satisfied. 
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In the talk, our main task is to analyse the inverse problem as follows. 

Inverse problem (IP): Assume that ( , )u x t  satisfies 

 
4 4

( , ) ( , ), , [0, ],

( , ) ( )( ( , ) ), , [0, ],
t

n A

u x t u x t x t T

u x t x u x t u x t T



 

    

     

 (3) 

where the domain   is fixed;  ,  , 0Au   are known constants, and ( )x  in the Stefan-
Boltzmann boundary condition satisfies (2). In addition, the normal coefficient function value 0  is 

assumed to be known.   here is an observation surface satisfying     and    . Then we 
would like to determine the unknown  , ( )u x  in (2) from the Dirichlet data ( , )u x t  on the 

observation surface  : 

 ( , ) ( , ), , [0, ]u x t f x t x t T    (4) 

Notice that in the system (2)-(3) there is no initial value 0 ( )(: ( ,0))u x u x  available due to the 
measuring difficulty. However, in order to assure that the heat transfer process we study here is a 
cooling-down process, we a priori assume that the initial value satisfies  

0 ( ) 0,Au x u x    

which is consistent with our experimental condition and the requirements in the applications.  

3. CONCLUSIONS 

In this talk, we initialize researches for an inverse problem, which arises in an industry quality 
control process. It requires us to determine coefficients of some physical nature on the surface of 
materials, and these coefficients characterize the Stefan-Boltzmann boundary condition in heat 
transfer process.  

We prove the uniqueness of the inverse problem, i.e., reconstruction of the coefficients, which 
provides a theoretical base for our ongoing numerical works. After that, we concentrate on the 
numeric, present an appropriate finite difference method of the forward problem, and introduce an 
effective reconstruction scheme for the inverse problem. The numerical results are provided, which 
give us a visible influence of the Stefan-Boltzmann coefficients in the heat transfer process, and 
show the validity of the proposed numerical method as well. Stability estimation of the inverse 
problem will be presented in a forthcoming paper. 
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ABSTRACT 

Natural convection occurring in high rise building space presents turbulent flow characteristics. 
Unknown boundary heat fluxes should be identified due to the control of building ventilation, i.e., 
inverse turbulent natural convection problems arising. An iterative Fletcher-Reeves conjugate 
gradient method is applied such that the gradient of the cost function is introduced when the 
appropriate sensitivity and adjoint problems are defined. The inverse problem of determining an 
unknown space dependent heat flux on the side of a square enclosure from temperature 
measurements by sensors within the flow is investigated to demonstrate the developed formulations. 
Noise data solutions are regularized by stopping the iterations with the discrepancy principle of 
Alifanov, before the high frequency components of the random noises are reproduced. The present 
method generally solves the inverse turbulent natural convection problem satisfactorily without any 
a priori information about the unknown heat flux to be estimated. 

Keywords: Inverse Heat Transfer, Adjoint Method, Turbulent Natural Convection 

1. INTRODUCTION 

As people spend nowadays most of their time in enclosed spaces, there has been an increasing 
interest in the problems dealing with indoor air environment [1,2]. To achieve comfortable indoor 
air environment, it requires profound knowledge of air, heat and contaminant transports, upon 
which appropriate indoor air management strategies could be implemented. Consequently, 
computational fluid dynamics (CFD) has been extensively used to evaluate the air motion, thermal 
and pollutant distributions; and it appears to offer a competitive and flexible alterative comparing 
with physical modelling and field measurement [2,3]. 

These CFD numerical studies were generally concerned with the determination of flow velocity, 
temperature and concentration distributions within the enclosed space when the initial conditions, 
boundary conditions, internal thermal source, thermal sink, thermo-physical properties and 
geometries of the enclosed environment are specified. However, there are usual situations involving 
the determination of the initial or boundary conditions from the knowledge of airflow, temperature 
and concentration measurements at some points within the domain. This is also called inverse heat 
transfer problem and has drawn attentions in diverse fields, such as aerodynamic duct design, 
solidification process, and high temperature measurements [4]. Over the last two decades, the 
inverse heat conduction problem has been received much attention. Typical problems addressed 
include reconstruction of the boundary heat flux condition from temperature measurement within a 
conducting body, determining thermal properties (such as conductivity) as a function of temperature 
and the calculation of distributed heat sources from the knowledge of the temperature field at some 
points within the domain and/or on the boundary. Despite the relatively large interest expressed in 
inverse heat conduction problems, inverse heat transfer problems involving convection flow have 
not attracted much attention. Convection heat transfer problems are governed by a system of partial 
differential equations, namely the continuity, Navier-Stokes, and energy equations. These studies 
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were mainly focused on the channel flow and the temperature field is independent of fluid flow [4]. 
Comparing with the aforementioned investigations of inverse heat conduction problems, inverse 
natural convection problems in enclosures are more difficult to investigate as the flow field is 
dynamically coupled with the thermal convection. Fluid flow introduces new physics such as 
boundary layer and vortex formation, which in turn localizes the region where sensitive information 
is contained. Typically, Colaco and Orlande estimated two boundary conditions of natural 
convection in the irregular cavities, which are transformed into regular geometries by using an 
elliptic scheme of numerical grid generation [5]. Zhao and his co-authors have discussed the inverse 
natural convections in porous and conjugate medium [6,7]. 

It will be observed that these investigations are confined in the domain of laminar flow. Whereas, in 
the filed of building ventilation and air environment, air flow and thermal plumes tend to be 
turbulent. In addition, the measurements cannot be easily accessed, while the accurate control of air 
flow is essentially required. Several authors have dealt with the inverse problems to achieve indoor 
air environment safe and comfort. Murakami combined CFD technique with a CFD feedback 
system, which could modify the boundary conditions (supply of air temperature, supply of air 
volume, etc.) to maintain the target value of predicted mean vote. This process of decision-making 
however is empirical rather than deterministic [8]. Zhang and Chen solved the quasi reversibility 
equation for contaminant transport to identify the pollutant source locations in a two dimensional 
aircraft cabins and a three dimensional office. Their method works better for convection dominant 
flows than that for recirculation flow. Whereas, the thermal plumes did not develop such strong to 
twist the main stream dominated by the forced flow [9]. Zhao and his co-authors have investigated 
the inverse heat convections within a slot vented enclosure [10], however still confining in the 
laminar flow domain. As preliminary and essential step, presently, the turbulent natural convection 
in an enclosure modelling the high rise buildings or atrium will be investigated in terms of direct 
and inverse problems. A heat source distributed along the wall generates a thermal plume by natural 
convection. As it develops, this plume conveys an ambient airflow, which increases as it rises 
within the room. 

The present inverse turbulent heat convection problem is the estimation of the surface heat flux 
given one or more measured temperature histories inside the fluid or on the boundaries. For the 
measurement of internal temperatures, errors are always present to some extent and they affect the 
accuracy of the unknown heat flux calculation. In many applications, the surface temperature is also 
desired in addition to the surface heat flux. The emphasis of this study is on the determination of 
heat flux, since surface temperature is generally a by-product of the heat flux calculation. Also, heat 
flux estimation is more sensitive to measurement errors than the surface temperature estimation 
because the heat flux is proportional to the temperature gradient. 

2. DEFINITION OF TURBULENT NATURAL CONVECTION PROBLEM 

An incompressible viscous fluid occupies the region shown in Fig. 1 and natural convection is 
induced from density variations within the domain. It is assumed in the analysis that the thermo-
physical properties of the walls materials and of the air are independent of temperature. The fluid is 
viscous, heat-conducting, Newtonian, and the Boussinesq approximation is valid. The turbulent 
flow considered is described mathematically by the Reynolds averaged Navier-Stokes (RANS) 
equations, including the time averaged energy equation for the mean temperature fields that drives 
the flow by the buoyancy force. In the near wall regions, steep nonlinear gradients and relatively 
low level of turbulence exist. To account for these, the wall function method is adopted. 

3. FUNCTIONAL OPTIMIZATION FOR INVERSE TURBULENT CONVECTION 

For the inverse natural convection problem, we should determine the boundary heat flux Qu(Y) with 
the known boundary conditions and the measured or designed temperature due to the fact that 
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temperature field inside the domain can be easily measured at various locations. In the present work, 
a solution to the inverse problem would be assumed existed in the sense of Tichonov. Particularly, 
we look for the boundary heat flux Qu that will minimize the following error, 

 



f dYXTYXTQE

M

i
iimiiu


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0

1
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2
1)(                             (1) 

Where T and Tm are the predicted and given temperature at the sensor’s position, respectively. M is 
the total number of sensors. The sequence of approximations for the unknown heat flux may be 
constructed following the steps of the conjugate gradient method, according to Qu

K+1 = Qu
K + αKpsK, 

where α is the step size and ps the conjugate search direction. The search direction is related to the 
gradient of the cost functional E with respect to Qu, whose function shape is not available for 
general case. The gradient of the cost functional E and the step size α must be obtained respectively 
from the solution of the adjoint and sensitivity problems. 

4. RESULTS OF INVERSE CONVECTIONS 

The following well-defined triangular function of heat flux Qu has been employed in the 
confirmation of the present algorithm for inverse natural convection problem, 




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
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YY

YY
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When the thermal Rayleigh number maintains at 1010, the fluid and heat transport structures are 
plotted in Fig. 2 as functions of heat flux profiles. A counter-clockwise flow eddy is observed under 
the heat flux condition, as presented in Fig. 2. 
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FIGURE. 1 Configurations                                 FIGURE 2. Inverse results  

Observing from the heatlines shown in Fig. 2, the short-circuiting effect occurs, i.e., the hot fluid 
flowing in the vicinity of the right wall transfers a significant portion of its sensible heat to the sink 
of the top side instead of carrying it all the way to the top and bottom cold walls of the enclosure. 

In practical experimental situations, it is expected that some errors will be introduced into the 
measurements. When inverse turbulent convection problems are solved using noisy data, the 
iterative regularization effect of the conjugate gradient on the solution can be detected just as well 
as in conduction, and used with much profit to optimize the final result.  

The convergence speed of the inverse solution slows down as frequency increases. Bias remains in 
the solution, which could be reduced by taking the sensors closer to active boundary, but at the 
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expense of a greater sensitivity to the higher noise frequency components. Numerical solutions 
presented in Fig. 3 reveal that the accuracy of estimation deteriorates as the noise level increases. 
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ABSTRACT 

This paper is focused on the numerical simulation of the acoustic field arising inside an acoustic 
resonator. The oscillatory flow field in the resonator is created by the piston at the left end of 
resonator. The fully compressible Navier–Stokes equations are considered. The formation of the 
wave fields in the resonator is numerically computed by the gas-kinetic BGK scheme. The 
interaction of the wave fields with viscous effects and the formation of streaming structures are 
revealed. 

Key Words: Numerical simulation, acoustic streaming, resonator, gas-kinetic BGK scheme. 

1. INTRODUCTION 

The acoustic streaming in the resonator is one of the challenging problems of the interaction of 
acoustic waves in compressible fluids and solid boundaries. It is a well-known fact that the particle 
velocities in the resonator are not simply sinusoidal and a pattern of time-independent vortical flows 
or steady circulations is often found in the body of compressible media. Sound at high intensity 
levels in gases may be accompanied by many nonlinear second-order effects such as acoustic 
streaming.  Although the streaming velocity magnitude is smaller than the primary oscillatory 
particle velocity magnitude, acoustic streaming may be effective in accelerating certain kinds of rate 
processes and has applications in devices like acoustic compressors, thermoacoustic refrigerators. 

The study of acoustic streaming started with the theoretical work of Lord Rayleigh [1]. The effect 
of compressibility on acoustic streaming near a rigid boundary was investigated by Qi [2] with a 
theoretical study. Kawahashi and Arakawa [3] performed a numerical analysis of acoustic 
streaming induced by finite-amplitude oscillation in a closed duct driven by a piston applying a 
fourth order spatial difference method. Yano [4] investigated acoustic streaming excited by resonant 
oscillations with periodic shock waves in a gas-filled closed tube. His computational predictions 
demonstrated strong vortices localized near the tube wall that are quite different from Rayleigh 
streaming. Alexeev and Gutfinger [5] studied resonant gas oscillations in closed tubes numerically 
and experimentally. They considered a two-dimensional axisymmetric flow for a compressible gas 
with a turbulence model and reported shock waves traveling back and forth along the tube. They 
reported streaming motion at resonance having an opposite direction with that in nonresonant 
oscillations. Most of these analytical and numerical studies, the formation of acoustic streaming is 
analyzed with a simplified approach which assumes that is a perfectly sinusoidal primary standing 
wave field in the domain of interes. 

In this study, an analytical model for the acoustic streaming is presented. The acoustic field in the 
resonator is investigated by solving the full two-dimension Navier-Stokes equations by gas-kinetic 
BGK scheme.  
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2. THE MODEL AND FINITE VOLUME GAS-KINETIC BGK SCHEME  

Acoustic streaming formation can be described by the full two-dimension Navier–Stokes equations 
for compressible fluid. In a Cartesian coordinate system, these equations are expressed as 

 0U V
t x y
    
  

  
 (1) 
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Here,   t is time, x and y refer to the Cartesian coordinates,   is density, p is pressure, U and V are 
the velocity components, and E is the total energy defined as: 
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  


 

where the ratio of specific heats 1.4  for ideal gas. The closure of the equations (1)-(4) is based 
on the ideal-gas law: p RT , where the specific gas constant R. In Eqs.(1)-(4), the viscous stress  
 is defined as  
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where   is the dynamic viscosity and takes the Sutherland’s law. And the heat-flux vector are 
written as 

1 2,T Tq q
x y

 
 

   
 

 

where T is temperature and k is thermal conductivity. 

The following is the finite volume gas-kinetic BGK scheme used in the paper. In the finite volume 
method, the macro-values  , , ,W U V E   are updated as follows  
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where ,i jV  is the cell volume, , ,i j ls  is the length of the cell interface, and , ,
n

i j lF is the numerical 
flux along the outer normal of the cell interface at the n-the time level. In the gas-kinetic BGK 
scheme, the flux is computed by kinetic approach. 

In the directional splitting method, the BGK model without external force in the x-direction is 
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where f is the gas distribution function and g is the equilibrium state approached by f . Both f and g 
are functions of space x, time t, particle velocities (u, v), and internal variable . The particle 
collision time   is related to the viscosity and heat conduction coefficients. The equilibrium state is 
a Maxwellian distribution 
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where 2 2 2
1 K      and 3K  for 2-dimension case. The Eq. (6) has the following integral 

solution at the interface  1/2 ,i jx y
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Here, 0f is the distribution function at nt  and  x x u t t    . Thus the flux along the x-direction 

at  1/2 ,i jx y
 can be computed as  

1

1/2 , , , , ,
n

n

t

i jt
uf x y t u v dudvd dt



   . The flux along other 

directions can be computed similarly by coordinate transfer. 

     The gas-kinetic BGK scheme uses the macro-values at the time level nt   to construct the 
function g and 0f , and obtains the flux in the (5). One can find the details in Ref. [7]-[8]. 

4. RESULTS 

The physical object of this research is an air gas-filled tube closed at one end, and driven at another 
end by a piston in a sine law  

 0 sinu l t   (8)  

where l is the displacement amplitude and is the angular frequency of piston moving.  

The following model is chosen from [9]. The resonance tube has a length of L = 1.995m and a 
diameter is of H = 0.036m. The parameter values of gas as initial data in calculations, are taken 
at 3

0 1.165 /kg m  , T0 = 295K, R = 287J / (kg.K), and the ratio of the specific heat = 1.4. The 

sound speed is defined as 0sC RT . The fundamental resonant frequency  of the tube 

is sC L  , L being the distance between the motionless end of the tube and the middle position 
of piston moving. The parameter l is chosen such that 0.00186l L  . The sound field created by 
the piston is investigated in simulation. No-slip velocity and zero-gradient temperature boundary 
conditions were used for all the solid walls. The mesh is 206×160. 

Figure 1 gives the instantaneous oscillatory flow fields in the resonant at eight different 

moments 40
4i

s

i Lt
C

 
   
 

, 0,1, ,7i   in the 20th cycle. In the figure, the streamtrace and the 

contour of pressure are denoted by solid line and dashed line, respectively. These are representative 
figures and although the flow directions change during the acoustic cycle due to periodic 
oscillations, the nature of the flow field is preserved.  Figure 1 shows that at six different moments 

1 2 3 5 6 7, , , , ,t t t t t t there are two-dimension flow patterns. And there is circulation pattern resulting 
from viscous interactions at a position for each moment 1 2 3 5 6 7, , , , ,t t t t t t . Figure 1(d) and (h) show 
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that at some region the flow is uniform at the moment 3t and 7t . These results are consistent with 
those in [4].  Moreover, our results show that there are pressure disturbance at the moment t0 and t4. 

    

 

 

 

 

 

 

FIGURE 1. The instantaneous flow fields in the resonant at eight different moments in the 20th cycle. 

5. CONCLUSIONS 

Acoustic field in the resonator is simulated by the gas-kinetic scheme. The obtained results show 
that there is uniform flow in the tube. The present studies also demonstrated successfully the kinetic 
scheme is well capable of simulating acoustic field in a resonant tube. 
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ABSTRACT 
A novel thermal resistance approach, cross-validated with CFD simulation, is presented in this paper to 
investigate the effects of dust deposition on a metal foam heat sink. As one would expect, the deposition 
of dust with low thermal conductivity on the highly conductive solid phase of metal foam decreases the 
heat transfer rate from the surface. At the same time, pressure drop increases monotonically as pores are 
blocked and the permeability is reduced. CFD results for a 2D case of a metal foam-wrapped tube 
bundle are in close agreement to those of the analytical model 

Key Words: Heat Transfer, Metal Foams, Dust Deposition, Finite Volume, Thermal Resistance. 

1. INTRODUCTION 

Metalfoams are a class of relatively new fibrous materials with novel thermophysical properties 
including low flow/thermal resistance, excellent surface-area-to-volume ratio, high temperature 
tolerance, low density, and corrosion resistance. Foams can be constructed from a wide variety of 
materials including metals (aluminum, nickel, copper, iron, and steel alloys), polymers, and carbon. 
More importantly, these micro structures can be tailored to meet a range of requirements.  

In metalfoam heat sinks, heat transfer rate is enhanced by conducting the heat to the metallic 
ligaments with a large accessible surface area per unit volume. The ligaments highly interact with 
the passing fluid as the boundary layer separates and pore level turbulence is promoted. As a result 
of recent decrease in production costs, metalfoams have received a special attention as a candidate 
for designing compact heat exchangers in the past decade. As such, numerous studies have been 
conducted to determine the transport properties of metalfoams. 

Despite such wonderful themrohydraulic performance of metalfoams, they are vulnerable to dust 
and particle deposition in the open pores. Depending on their size and density (as well as the 
cooling air flow rate), the particles can deposit on the heat sink surface and reduce the effective 
thermal conductivity of the heat sink. If not cleaned, the particles can block the pores and further 
reduce the permeability of the porous medium. Our literature review reveals a need to a model that 
can predict the dust deposition effect on the performance of the sink. Hence, proposing a thermal 
resistor network and conducting CFD simulations, this paper aims at filling this gap in the literature.  

2. ANALYSIS  

Forced convection over a metalfoam heat sink with constant wall temperature of Ts is considered. 
The metalfoam is sandwiched between a hot plate and an insulated wall; see Fig. 1. Laminar flow of 
an incompressible constant property fluid is investigated. Moreover, the side wall effects on the 
volume-averaged velocity (UD) distribution are neglected and a uniform volume averaged velocity 
is assumed over the entire cross-section. The width of the heat sink is assumed to be long enough 
such that the problem can be analyzed two dimensionally. The solid matrix (metalfoam) is assumed 
to be isotropic and its thermo-physical properties are uniform over the entire area. A simple 



 
THERMACOMP2011, September 5-7, 2011, Dalian, China 

X.K.Li, N.Massarotti and P.Nithiarasu (Eds.) 

 

approach for modeling the heat transfer is to adopt a thermal resistor network. The network shown 
in Fig. 1 is comprised of a lumped mass at the nodes that is connected to other side nodes through 
thermal resistors. The resistors depend on the conductive properties of the ligaments between the 
nodes and the convective interstitial heat transfer coefficient of the ligaments and the local fluid 
temperature. The actual resistor network of the matrix shown here is 2D but yet complex. 

x
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FIGURE 1. Schematic of the metalfoam heat sink (left) along with the network of ligaments (right). 

The metalfoam microstructure described by a complex geometry prevents exact solution of 
transport equations. The geometrical parameters that describe such media are: porosity  , fiber 
diameter, and pore density, which is typically expressed in the unit of pores per inch (PPI) [1-3].  
Following Bhattacharya et al. [4] the random dodecahedron-like microstructure of metalfoams is 
modeled by a cubic unit cell , as shown in Fig. 2a, which is assumed to be repeated throughout the 
media. However, the cross-section of the ligaments are not circular and is a function of porosity, see 
[5-7] for more details. Bhattacharya et al. [4] proposed the following relationship between the fiber 
diameter df and pore diameter dp: 

  04.0/11,
3

118.1 



 



 eG

Gd
d
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where G was a shape factor that took into account the variation of ligament cross-section with 
porosity. Bhattacharya et al. [4] did not provide an explicit equation for estimating the fiber’s 
diameter. Our analysis showed that the following correlation can predict the experimental values of 
df, in millimeter, for aluminum foams reported by others within 9% accuracy: 

2

2.430.431 0.0049fd PPI
PPI

    (2) 

 
FIGURE 2. Metalfoam microstructure; a) the actual geometry, b) considered unit cell. 

 
The current analysis seeks to estimate the overall heat transfer from a metal foam heat sink modeled 
as a network of interconnect ligaments allowing conduction and interfacial convection to the 
passing fluid. Here, Rconv,fiber is associated with the interfacial convection from the fibers 
perpendicular to flow direction in each unit cell, calculated as: 
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where Aint,pore is the surface area of fibers perpendicular to flow direction and hint is the interstitial 
heat transfer coefficient given by [7] 
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The convective thermal resistance from the base plate is also calculated from: 
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R

pfplate
plateconv


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where the convective heat transfer coefficient is given by:  
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The conductive resistance at each pore is calculated from: 
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dd
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pf
cond




  (9) 

where M is the number of pores in the through-plane direction for a unit of length. The effect of the 
variation of ligament cross-section with porosity is included by using dfG instead of df.  

3. RESULTS 

The present approach [8] is compared with the experimental data reported in [7]; see Fig. 3. The 
heat sink studied in [7] has a height of 0.045 m and the length of 0.112 m. Thermal conductivity of 
solid phase was reported as 213 W/mK. The values of Nukeff calculated using the present model for a 
clean heat exchanger are witin 12% of the experimental data over a wide range of ReKPr. Adding a 
layer of dust, with either a uniform or non-uniform thickness, to the heat sink introduces an extra 
conduction resistance to our model. 
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FIGURE 3. Comparison of the present model with experimental data of Calmidi and Mahajan [7]. 

An independent CFD simulation of the problem is also conducted by running ANSYS12.1 solver to 
get results from a four row tube bundle covered by metal foam [8]. Two extreme cases were 
considered. One assumes that the dust is accumulated on the front rows, case A, while the other one 
allows for uniform distribution and penetration of dust to the foam in such a way that all tubes are 
covered with the same amount of particles, case B. 
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FIGURE 4. Velocity magnitude and isotherms for case A. 

 

FIGURE 5. Velocity magnitude and isotherms for case B. 

4. CONCLUSIONS 

Based on the thermal resistance approach, a theoretical study has been conducted to investigate the 
effects of dust deposition on the exterior surface of a metal foam heat exchanger. The model tends 
to generate accurate results for the case of clean heat exchangers. However, due to lack of 
experimental data on fouled foam heat exchangers in the literature, such comparison under dusty 
condition was not possible in this study. The closed form solutions are then compared with CFD 
(finite volume) simulation of the heat exchanger under dusty conditions.  
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ABSTRACT 

Several piping failures caused by thermal stratification have been reported in several nuclear power 
plants since the early 1980s. However, this kind of thermal effect was not considered when the old 
vintage nuclear power plants were designed. Therefore, additionally, it is necessary to evaluate this 
unexpected thermal effect on structural integrity. Thermally stratified flow is usually generated by 
turbulent penetration from reactor coolant system to branch line or leakage through a damaged part 
of valve in branch line. In this paper, the characteristic of thermal stratification in a shutdown 
cooling system of pressurized water reactor (PWR) plant were investigated by using numerical 
method. First, CFD analyses were carried out considering in-leakage. Especially, the temperature 
distribution along the shutdown cooling system piping was simultaneously calculated based on 
conjugate heat transfer condition. Finally, thermal stress caused by stratified flow in piping was 
evaluated based on one-way sequential coupling method. This approach can reduce the effort to 
calculate heat transfer coefficient and lead more realistic and accurate results. 

Key Words: Conjugate Heat Transfer Analysis, Coupled Analysis, Thermal Stratification. 

1. INTRODUCTION 

According to the increase of operating nuclear power plants, piping failures related to thermal 
stratification phenomenon have increased throughout the world. Usually, thermal stratification can 
lead to unexpected bending stresses and serious thermal fatigue cracking in piping system. 
Nevertheless, this kind of thermal effect was not considered when the old vintage nuclear power 
plants were designed [1]. Thus, United State Nuclear Regulatory Commission (USNRC) issued the 
Bulletin No. 88-11 to request evaluation on the main piping which has a possibility to experience 
thermal stratification [2]. Furthermore, Electric Power Research Institute (EPRI) published the 
guidance, MRP-146 [3] for thermal fatigue evaluation on the thermally stratified branch line. It 
means thermal stratification has become a significant concern for nuclear power plants because of 
its potential impact. Usually, thermal stratification phenomenon which causes unexpected thermal 
fatigue can be generated by turbulent penetration and valve leakage at the branch lines which are 
connected to reactor coolant system (RCS).  

One of possible branch systems which can be affected by turbulent penetration and leaking is the 
shutdown cooling system (SCS) in pressurized water reactor (PWR) plants. In this study, thermal 
stress evaluation on SCS piping was performed using one-way sequential coupled analysis method. 
First, temperature distribution along a SCS piping in PWR was estimated by using CFD analysis. 
Especially, the temperature distribution caused by turbulent penetration and leaking flow was 
analyzed. Then, the results of thermal flow analysis were converted to the input file for thermal 
stress analysis. It means that thermal stress was calculated by directly considering the temperature 
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distribution. In this scheme, there is no need to calculate and define heat transfer coefficients for 
thermal stress analysis so that this method is more realistic and effective. 

2. CFD ANALYSIS MODEL DESCRIPTION 

The SCS of PWR plant operates to continually remove heat when the reactor shutdown occurs. 
During normal or start-up operating condition, the coolants of SCS are isolated since all valves in 
SCS are closed [1]. However, if a damaged part exists at the first isolation valve, leaking flow can 
generate from branch line to RCS (in-leakage). Fig. 1 shows the schematic diagram of a SCS piping 
which is connected to the bottom of hot leg. The nominal diameter of SCS piping is 0.406 m and 
wall thickness is 0.04 m. Also, additionally, reactor drain tank (RDT) line and high pressure safety 
injection (HPSI) line are linked with the SCS piping and the nominal diameters of each line are 
0.076 m and 0.051 m. We excluded the RDT line from analysis scope because this line has too 
small diameter and long vertical part so that it is difficult to generate stratified flow. Fig. 2 presents 
the scope of thermal flow analysis, especially, pipe and valve disks of two valves (V652, V532) 
were considered as solid domain.  

For CFD analysis, three dimensional unsteady, incompressible flows were assumed and the effect 
of viscous dissipation and radiation heat transfer was ignored. Because the flow in hot leg belongs 
to turbulent region so that shear stress transport (SST) model was considered as turbulent model. 
SST model is widely known to high accuracy of boundary layer simulation because this model 
applies a k-ω based model formulation in proximity of the wall and k-ε model in the bulk of flow 
[4]. To simultaneously calculate the temperature distribution across the pipe, conjugate heat transfer 
condition was applied. Furthermore, the temperature dependent density difference was directly 
considered to calculate buoyancy term. The properties of light water were estimated according to 
temperature variation. Consequently, in this study, Reynolds-averaged Navier-Stokes (RANS) 
equations was used as governing equations. 

Since, thermal distribution is rapidly changed according to time, transient analysis was performed 
until 3000 seconds considering 0.1seconds time step. The material of piping and valve disk was 
assumed to ANSI SUS 304 steel and temperature dependent properties were imposed. The initial 
temperature condition was applied to 308 K and initial flow was supposed to stagnant. In addition, 
all outer surfaces of piping were assumed to be adiabatic and no-slip conditions was applied to all 
inner surfaces of piping. Temperature and flow rate of coolant at the inlet of hot leg are 586 K and 
7718 kg/s. For the outlet, a zero average static pressure outlet condition has been applied. Also, the 
ends of each branch line were assumed to be isolated and to be a low temperature wall of 308 K. 
Finally, as a leakage rate, 7.5D ft3/day (D represents the nominal diameter of piping) was applied to 
V652 interface based on guidelines for experiment. 

         

FIGURE 1. Schematic diagram of a SCS piping             FIGURE 2. Illustration of CFD analysis model 
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3. ONE-WAY SEQUENTIAL COUPLED ANALYSIS APPROACH 

From the results of unsteady thermal flow analysis, the history of temperature at each node and heat 
flux at each element was converted to the input file for structural analysis without any calculation of 
heat transfer coefficient. A series of this process is called one-way sequential coupled method. In 
previous studies, it was difficult to determine appropriate heat transfer coefficient around piping 
because thermal distribution is rapidly changed with geometry and flow characteristic. However, in 
this method, there is no need to define heat transfer coefficient so that it is more effective and 
correct. In this research, based on a converted input file, thermal stress analysis was carried out 
using a commercial FE analysis code, ANSYS ver. 12 [5]. 

For transient thermal stress analysis, first, we converted a grid model and temperature distribution 
data of pipe region into input format for FE analysis by some operation for mesh-based parallel 
code coupling interface (MPCCI) between CFX code and ANSYS mechanical code. The sensitivity 
analysis on grid size was not conducted since it is fairly small compare with general grid size for FE 
analysis. In the process of FE analysis, the initial temperature condition was set to be 308 K and the 
outer surface of piping was assumed to be adiabatic wall. At the both ends of the RCS hot leg, 
symmetric condition was imposed. In addition, at the end of each branch line, fixed support 
condition was applied and several support conditions were also imposed reflecting real support 
system. Above all, we were not considered any other loads except temperature loading condition. 
The temperature dependent material properties of piping, ANSI SUS 304 steel, were employed. 

4. RESULTS 

Fig. 3 (left) describes the velocity vectors and stream lines from the intersection between hot leg 
and SC line. Due to the strong turbulent penetration from the hot leg, a downward flow is generated 
near the connection between hot leg and SC line. Furthermore, since the length of turbulent 
penetration from hot leg reaches the connection of HPSI line, stream line is also developed near the 
first elbow of HPSI line. However, turbulent penetration cannot significantly influence to the 
horizontal part of SC line and the effect of leakage is relatively small. Fig. 3 (right) shows the 
temperature distribution in SCS flow and piping at 3000 seconds. Until the elapsed time, 3000 
seconds, thermal stratification cannot be developed near the first valve, V 652, in the SC line. 
Because turbulence from the RCS can pervade into HPSI line which is horizontally connected to SC 
line, thermal stratification well develop into HPSI line and the effect of turbulent penetration is the 
most at the first elbow, section A-A’.  

The temperature difference between top and bottom at the inner wall of section A-A’ is represented 
in Fig. 4. The maximum temperature difference is 80 K and this value is larger than threshold 
temperature (89 oF) which is presented in EPRI MRP-146 [3]. Therefore, thermal stress evaluation 
should be conducted considering the effect of the stratified flow. The maximum thermal stress 
results at the critical location are indicated in Table 1. Similar to the result of thermal flow analysis, 
high thermal stratification stress, STS is developed near the intersection of HPSI line. Relatively, the 
thermal stress near the node C and D is very small due to stratification flow is not well developed 
near these regions. Therefore, to understand the effect of in-leakage and turbulence penetration near 
the V652, supplementary analysis considering extended elapsed time is needed. However lots of 
computational time will be requested to complete this analysis. 

5. CONCLUSIONS 

The one-way sequential coupled analysis approach is more effective and realistic than previous 
methods to predict thermally stratified flow induced thermal stress because there is no need to 
calculate and define heat transfer coefficient. In addition, to prevent excessive thermal stresses, the 
HPSI line should be relocated to avoid the influence of turbulent penetration.  
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FIGURE 3. Vectors and streamlines plot (right) and temperature distribution (left) in branch lines 

                                                                          

FIGURE 4. Temperature differences at section A-A’                TABLE 1. Max. STS at critical location 
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Location STS  
(MPa) 

Node A 
(Vertical pipe) 430 

Node B 
(SC connection) 170 

Node C 
(HPSI connection) 0.275 

Node D 
(RDT connection) 0.206 
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ABSTRACT 

The performance of heat exchangers working in the cryogenic temperature range is strongly 
affected by factors such as longitudinal wall conduction, heat in leak from the surroundings, flow 
maldistribution, fluid property variations etc. In most heat exchanger analyses the common 
assumption is that the ends are insulated. However, in case of small J-T refrigerators longitudinal 
wall conduction is significant. The cold end of the heat exchanger is almost directly connected to 
the evaporator. This leads to appreciable heat leak to the evaporator leading to significant drop in 
performance. In this paper the governing equations for a counter-flow heat exchanger, with heat 
loss at the cold end, are solved by FEM and the methodology validated by comparing the results 
with numerical and experimental values published earlier. The analysis is further extended to 
understand the effects of variation of wall temperature at the cold end and the effect of NtuH not 
being the same as NtuC, on the performance of the heat exchanger. 

Key Words: Cryogenic Heat Exchangers; Heat Leak; Longitudinal heat conduction; Finite 
Element Method. 

1. INTRODUCTION 

A common assumption made by most authors analyzing the performance of heat exchangers is that 
the walls of the heat exchanger are insulated at either end. Such an assumption is, however, not 
valid in the case of small J-T refrigerators such as micro-miniature refrigerators (MMR). 
Longitudinal conduction through the wall separating the two fluids will be much higher in this case 
compared to other cryogenic heat exchangers. Due to the small distance between the cold end of the 
refrigerator and the evaporator, a significant part of the heat conducted through the wall is leaked to 
the evaporator. The parasitic heat leak leads to significant loss of refrigeration. As such, the 
assumption of an insulated cold end cannot be applied to an MMR. 

In the present paper the governing equations for a counter-flow heat exchanger, with heat loss at the 
cold end, are solved by FEM using the Galerkin’s method. The results obtained are validated by 
comparison with values published by Narayanan and Venkatarathnam [2] and Gupta & Atrey [3]. 
The study is then extended to understand the effect of variation of the wall temperature at the cold 
end and the effect of NtuH not being the same as NtuC, and how it affects the exit temperatures of the 
two fluids and heat loss at the cold end. 
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2. GOVERNING EQUATIONS 

The governing equations for the hot fluid, cold fluid and the wall are obtained by energy balance as 
follows: 

Hot Fluid:     

  
     (     )        (1) 

Cold Fluid:        
  
     (     )   

 (   )

  
(       )      (2) 

Wall:         

  
  

   

  
 
 

 

    

   
         (3) 

In the above expressions θh, θc and  θw represent the dimensionless temperatures of the hot fluid, 
cold fluid and the wall respectively. The different non-dimensional terms used in the analysis are 
defined as mentioned below: 
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In the absence of heat in leak α = 0 and hence the equation for the cold fluid reduces to  
   

  
     (     )       (5) 

Boundary Conditions 

Assuming that the wall is insulated at the hot end, and conducting at the cold end, the boundary 
conditions can be expressed as follows:  

X = 0:           
   

  
      (6) 

X = 1:                     (7) 

The heat loss to the evaporator from the cold end will be maximum when wall temperature at the 
cold end of the heat exchanger is equated to zero. For this case the boundary conditions for the cold 
end may be modified as: 

X = 1:                   (8)  

The boundary condition expressed in Eq. (8) has been used in the present analysis and the results 
have been compared with those published by Narayanan et al [2]. 

3. FINITE ELEMENT METHOD 

The heat exchanger is discretized into a number of elements. The method of minimizing the 
weighted residual (Lewis et al, (4)) is used to solve equations (1)-(5) as: 

∫  {
   

  
     (     )}     
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∫  {
   

  
     (     )}     
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∫  { 
   

  
  

   

  
 
 

 

    

   
}     

 

 
   (11) 

A linear variation of the hot and cold fluids as well as the wall in a is assumed in every single 
element for counter flow as: 

θh = Niθhi + Njθho;  θc = Njθco + Niθci;  θw =Niθwi + Njθwo    (12) 
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where the shape functions Ni and Nj are given by Ni = 1− X and Nj = X . Substitution of these 
approximations in equations (9) – (11) the set of algebraic equations can be obtained if the weighted 
parameter W is defined. In the present analysis the Galerkin’s method is used, in which the weights 
are taken to be the shape functions Ni and Nj. The discretized governing equations are written in 
matrix form for each element as: 

 [K]{θ} = {f }     (13) 

Assembling the element matrix form of the governing equations for all the elements in the solution 
domain leads to the global matrix form of the governing equations in the whole solution domain. 
The resultant global matrix form is modified by the forcing boundary conditions chosen and solved 
by MATLAB for the dimensionless temperatures along the heat exchanger. 
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TABLE 1. Comparison of temperature distribution for a counter-flow heat exchanger, with heat in 
leak and longitudinal wall conduction with values published by Gupta et al (3) for NTU = 18, λ = 
0.0000901 

4. RESULTS 

In the present paper the governing equations have been solved by FEM and the results obtained 
compared with results published by Narayanan et al (2) and experimental results published by 
Gupta et al (3). Figs (1)-(4) and Table (1) show the comparisons. The work is then extended to 
understand (a) the variation of the wall temperature at the cold end and (b) the effect of NtuH not 
being the same as NtuC, and how it affects the exit temperatures of the two fluids and heat loss at 
the cold end. These have been shown in Fig(5) and Fig. (6). 

5. CONCLUSIONS 

The good comparison of the predictions from FEM with the numerical values (2) and experimental 
results (3) establish the validation of the present methodology. The method can be used for both 
balanced and unbalanced flow heat exchangers without any need for going in for separate numerical 
methods for the two types. Using the analysis it is possible to predict the heat loss at the cold end 
for a given wall temperature at the cold end or predict the wall temperature for a specified heat loss 
at the cold end. Further the analysis shows that with increasing values of ratio NtuH/NtuC the exit 
temperature of the hot fluid decreases while that of the cold fluid increases. The heat loss at the cold 
end of the heat exchanger increases with increasing values of NtuH/NtuC.  
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x (m) Temperature of the hot fluid,  
 (heat in leak parameter α = 0.003) 

Temperature of the cold fluid,  
(heat in leak parameter α = 0.003) 

Experimental 
Values – 

Published (3) 

FEM Values FDM Values – 
Published (3) 

Experimental 
Values - 

Published (3) 

FEM Values FDM Values – 
Published (3) 

Th, K Th, K Th, K Tc, K Tc, K Tc, K 
0 297.00 297.00 297.00 283.40 287.88 289.89 
2 252.30 255.22 261.50 244.90 245.69 252.90 
4 211.40 210.31 218.20 204.30 199.79 207.10 
6 162.20 159.47 165.80 153.30 147.29 151.60 
8 104.50 99.48 102.60 84.90 84.90 84.90 
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ABSTRACT 

This paper deals with the numerical solution for effects of aspect ratio on natural convection in a 
vertical annulus embedded with porous medium for different types of cold wall boundary 
conditions. The heat transfer is assumed to take place by convection and radiation. The inner wall 
(hot wall) of the annulus is maintained at an isothermal temperature, which manifests the case of 
high heat transfer co efficient, thus indicating the heat source. The outer wall (cold wall) is 
subjected to different types of boundary conditions. The different types of cold wall boundary 
conditions include the uniform temperature, non uniform temperature and convective cases. The 
fluid is assumed to obey Darcy’s law. The governing partial differential equations are non-
dimensionalised and solved by finite element method. The porous medium is discretised with 
unstructured triangular elements. The effects of aspect ratio and Rayleigh number on the Nusselt 
number and Sherwood number are investigated. The results reveal that the Nusselt number and 
Sherwood number at hot wall increase initially with the aspect ratio and then decrease. 

Key Words: Radiation, Convection, Numerical Method, Porous Medium, Heat Transfer 

 

1. INTRODUCTION 

In recent years, natural convection, heat and mass transfer through porous medium have received 
remarkable interest among the researchers. Porous medium plays important role in many 
geophysical and engineering applications such as heat exchangers, energy recovery from petroleum 
resources, thermal insulation of buildings, chemical reactors, nuclear waste disposal etc.  

To the best knowledge of the authors there appears to be no study in the literature concerned with 
the combined effect of natural convection and radiation on a saturated vertical annular porous 
medium with different types of cold wall boundary conditions. The work carried out in the past 
corresponds to the case of non dimensional temperature ( ̅ ) to be zero, as observed from the 
literature. In the present work, three case studies have been carried out. The first case corresponds 
to the uniform temperature condition ( ̅ = 0.1), whereas in the second case the effect of non 
uniform temperature variation in accordance with the power law, along the cold wall of the vertical 
annulus is analysed. The third case deals with the convective cold wall boundary condition, which 
is the real case, as observed in practice. 

The objective of the present work is to study the effect of aspect ratio on natural convection, heat 
and mass transfer for different types of boundary conditions at the cold wall. The effects of 
radiation and Rayleigh number on the heat and mass transfer in terms of average Nusselt number 
and average Sherwood number respectively are analysed. Also their effects on temperature, flow 
and concentration distributions are examined. 
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2. MATHEMATICAL FORMULATION 

In the present study, a saturated vertical porous annulus of inner radius (ri) and outer radius (ro) is 
considered. Let the inner wall (hot wall) be at temperature Ti and outer wall (cold wall) be at 
temperature To such that To < Ti. The two horizontal walls are insulated, thus making them 
adiabatic.  

The following assumptions are made in the present study: 

a) Porous medium is saturated with fluid 
b) The fluid is assumed to be gray emitting but non-scattering 
c) The fluid and medium are in local thermal equilibrium in the domain 
d) The porous medium is isotropic and homogeneous 
e) Fluid properties are constant except for the variation of density 
f) Darcy’s law is assumed for the flow in the porous medium 

For the problem under investigation the boundary conditions can be defined as: 

at  r= ri,  ̅ =  ̅  = 1, ̅=1,   ̅ = 0 – General condition for all the three cases 
at r = ro ,  ̅=  ̅  =[B(z)λ],  ̅=0,   ̅  = 0 – Condition for Case 1 corresponding to uniform 

temperature, here λ=0, B=0.1. Hence  ̅  = 0.1. 
at r = ro ,  ̅= ̅  =[B(z)λ],  ̅=0,   ̅ = 0 – Condition for Case 2 corresponding to non uniform 

temperature, where    B is a constant. In the present study, λ has been evaluated for a value of 
0.25.  

at r= ro,*  
  ̅

  ̅
+
  

=h(   -T∞),  ̅=0,  ̅ = 0 – Condition for Case 3 corresponding to convective 

boundary condition  
Non-dimensionalised momentum equation: 

    ̅ 

  ̅ 
 +  ̅  

  ̅
(
 

 ̅

  ̅

  ̅
) =  ̅   *

  ̅

  ̅
  

  ̅

  ̅
+ 

Non-dimensionalised energy equation: 
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 Non-dimensionalised concentration equation: 
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3. RESULTS 

Case 1: Effect of aspect ratio on   ̅̅ ̅̅  and   ̅̅̅̅  for uniform temperature cold wall boundary 
condition 
As can be observed from Fig. 1,   ̅̅ ̅̅  and   ̅̅ ̅ initially increase with aspect ratio and then decrease. 
The increase in   ̅̅ ̅̅  is due to the large thermal potential between the hot and cold walls whereas the 
the increase in    ̅̅ ̅ is due to the velocity only. 

Case 2: Effect of aspect ratio on   ̅̅ ̅̅  and   ̅̅̅̅  for non uniform temperature cold wall boundary 
condition 
As can be observed from Fig. 2, this case is similar to the Case 1 except for the lower values of   ̅̅ ̅̅  
and almost same values of   ̅̅ ̅. 
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Case 3: Effect of aspect ratio   ̅̅ ̅̅  and   ̅̅̅̅  for convective boundary condition 
As can be observed from Figs. 3 and 4, which indicate the effect of aspect ratio for Bi=1 and 10 
respectively,   ̅̅ ̅̅  and   ̅̅ ̅ initially increase with aspect ratio and then decrease. 

Figures. 5 and 6 indicate the isothermal lines for pure natural convection corresponding to Cases 1 
and 2 respectively. Figures 7 and 8 indicate the isothermal lines for Biot numbers 1 and 10 
respectively corresponding to Case 3. 

                    
FIGURE 1.                                                                         FIGURE 2. 

                    
FIGURE 3.                                                                         FIGURE 4. 

                   
FIGURE 5.                                                                         FIGURE 6. 

                    
FIGURE 7.                                                                         FIGURE 8. 
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4. CONCLUSIONS 

The effect of aspect ratio and different types of  cold wall boundary conditions on the natural 
convection in a saturated vertical porous medium is considered in the present study. The results for 
 ̅  = 0.1 (uniform temperature), λ=0.25 (non uniform temperature) and Bi=1 and 10 (convective 
boundary condition) are shown in the present work. The governing equations are non-
dimensionalised and solved using finite element method.It is found that the average Nusselt number 
and average Sherwood number increase initially with the aspect ratio and then decrease at the hot 
wall. They attain a maximum value at aspect ratio around unity, where the heat transfer changes 
from conduction to convection thus increasing the heat transfer coefficient. As the aspect ratio 
increases further, for a constant outer wall temparature, the heat fluxes will reduce along the height 
and consequently Nusselt number reduces. It is also found that the average Nusselt number and 
average Sherwood number increase with the Rayleigh number at the hot wall. The effect of 
Rayleigh number increases for the case of higher thermal potential between the hot wall and cold 
wall. Increase in Rayleigh number increases the fluid movement, which is due to the enhanced 
buoyancy effect. Hence the fluid velocity is increased along with the Nusselt number.Radiation has 
a considerable effect on  Nusselt number indicating the increase in natural convection process. 
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ABSTRACT 

A simple system analysis, originated from the early finite element methods, is considered first. The 
method of obtaining FEM equations from differential equations is illustrated next. Then design of 
micro compact heat exchanger is considered for illustration of FEM analysis, verification with 
experimental work and utilization of AI tools. Then FEM modeling approach to solve the 
momentum and energy equations to obtain the heat transfer coefficients and skin friction 
coefficients follows.  

1. ANALYSIS OF HEAT EXCHANGER 

The performance of a heat exchanger can be calculated in terms of its effectiveness for a given 
condition (Holman 1989; Incropera and Dewitt 1990). In order to determine the effectiveness of a 
heat exchanger, we have to calculate the outlet temperatures of both the hot fluid and the cold fluid 
for the given inlet temperatures. The overall heat transfer coefficient may be a constant or could 
vary along the heat exchanger. (Figure 1) 

 

FIGURE 1. Schematic diagram of a shell and tube exchanger 

 

2. THREE-FLUID PARALLEL AND COUNTER FLOW HEAT EXCHANGER 

It may be difficult to derive the stiffness matrix and the loading terms from basics in a complicated 
heat exchanger system. Alternatively, we write down the differential equations for the fluids 
involved in the heat exchanger. We make use of Weighted Residual methods (sub-domain and 
Galerkin) to derive the element stiffness matrix and the loading terms. All these are illustrated 
through the example of a three fluid heat exchanger. (Figure 2). This can also be used to illustrate 
the effect of environment on two-fluid heat exchanger. 
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FIGURE 2. Schematic diagram for three fluid heat exchanger 

Finite Element Method is used for solving the equations by  minimizing the weighted residual with 
linear elements. 

The discretized governing equations can be written in matrix form for each element as: 

[ ]{ }   { } 

 

3. RESULTS AND DISCUSSION 

 

FIGURE 3. Variation of the effectiveness with ntu for different values of heat transfer coefficient 
ratio and fixed values of r1 = r2 =1.0 and θ=0 
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4. MICRO COMPACT HEAT EXCHANGER 

In recent years, with the rapid emerging of Micro-Electro-Mechanical Systems (MEMS), many 
micro-fabrication technologies have been developed and being introduced in the field of heat 
transfer engineering to realize micro-channel devices. One of the famous micro machining methods, 
LIGA process, has been adopted by Harris, et al. (2000, 2002) to fabricate micro-cross-flow heat 
exchanger. Generally micro heat exchanger can be applied in many important fields; namely micro-
electronics, aviation and aerospace, medical treatment, biological engineering, materials sciences, 
cooling of high temperature superconductors, thermal control of film deposition and cooling of 
powerful laser mirrors. Compared with conventional heat-exchangers, the main advantage of micro 
heat exchanger is their extremely high heat transfer area per unit volume. 

 

FIGURE 4.  Schematic of micro-cross flow heat exchanger (MHE) 

 

 

FIGURE 5. Temperature rise of air as a function of air velocity for the MHE 
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This MHE is designed based upon the performance criteria of a car radiator where its main function 
is for the dissipation of heat into air to prevent the engine from overheating. (figures 3, 4 and 5). 

5. NEURO GENETIC METHODOLOGY FOR OPTIMIZATION 

This work will present a neuro-genetic methodology to simulate and optimize the performance of 
the MHE for different working parameters and geometries. This methodology combines both the 
artificial neural network (ANN) and genetic algorithms (GA) together to achieve the optimization 
goal. ANN is capable of building up the quite complex and non-linear model through training by 
making use of available data obtained through finite element method (FEM) simulation. 

6. ARTIFICIAL NEURAL NETWORK 

In this work, the multi layer perceptron neural network has been trained using the back-propagation 
algorithm. The back-propagation algorithm uses supervised learning, which means that we provide 
the algorithm with examples of the inputs and outputs we want the network to compute, and then 
the error (difference between actual and expected results) is calculated. The idea of the back-
propagation algorithm is to reduce this error until the ANN learns the training data. The training 
begins with random weights and the goal is to adjust them so that the error will be minimal. 

7. GENETIC ALGORITHMS 

Genetic Algorithms (GA) are adaptive search methods based on Darwinian’s principles of natural 
selection, survival of the fittest and natural genetics. They combine survival of the fittest among 
string structures with a structured yet randomized information exchange to form a search algorithm 
with some of the innovative flair of human search. As in human genetics, GA exploits the fittest 
traits of old individuals to create a new generation of artificial creatures (strings). With each 
generation, a better population of individuals is created to replace the old population. Based on 
these principles, genetic algorithm is developed as a search tool that efficiently exploits historical 
information to speculate on new search points with expected improved performance. 

8. CONCLUSIONS 

Finite Element Method of predicting the performance of a heat exchanger is illustrated by an 
example of three  fluid heat exchanger. FEM methodology is extended to a micro compact heat 
exchanger and the methodology to improve the modeling in a simple way to agree well with 
experimental values is illustrated. Application of Artificial intelligence tools like ANN and GA are 
applied to the Micro Compact Heat Exchanger to achieve maximum effectiveness by choosing the 
proper dimensions of the heat exchanger. 
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